×

Non-Gaussianity in the squeezed three-point correlation from the relativistic effects. (English) Zbl 1507.83114


MSC:

83F05 Relativistic cosmology
62F10 Point estimation
35B20 Perturbations in context of PDEs
85A15 Galactic and stellar structure
30D40 Cluster sets, prime ends, boundary behavior
62H20 Measures of association (correlation, canonical correlation, etc.)
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
47A20 Dilations, extensions, compressions of linear operators

References:

[1] SDSS Collaboration; Tegmark, Max, Cosmological Constraints from the SDSS Luminous Red Galaxies, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.123507
[2] Planck Collaboration; Ade, P. A. R., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys., 571, A24 (2014) · doi:10.1051/0004-6361/201321554
[3] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[4] Lyth, David H.; Riotto, Antonio, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept., 314, 1-146 (1999) · doi:10.1016/S0370-1573(98)00128-8
[5] Linde, Andrei D., Inflationary cosmology, Phys. Rept., 333, 575-591 (2000) · doi:10.1016/S0370-1573(00)00038-7
[6] Maldacena, Juan Martin, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP, 05, 013 (2003) · doi:10.1088/1126-6708/2003/05/013
[7] Bartolo, N.; Komatsu, E.; Matarrese, Sabino; Riotto, A., Non-Gaussianity from inflation: Theory and observations, Phys. Rept., 402, 103-266 (2004) · doi:10.1016/j.physrep.2004.08.022
[8] Dalal, Neal; Dore, Olivier; Huterer, Dragan; Shirokov, Alexander, The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.123514
[9] Verde, Licia; Matarrese, Sabino, Detectability of the effect of Inflationary non-Gaussianity on halo bias, Astrophys. J. Lett., 706, L91-L95 (2009) · doi:10.1088/0004-637X/706/1/L91
[10] Camera, Stefano; Carbone, Carmelita; Fedeli, Cosimo; Moscardini, Lauro, Neglecting Primordial non-Gaussianity Threatens Future Cosmological Experiment Accuracy, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.043533
[11] Camera, Stefano; Maartens, Roy; Santos, Mario G., Einstein’s legacy in galaxy surveys, Mon. Not. Roy. Astron. Soc., 451, L80-L84 (2015) · doi:10.1093/mnrasl/slv069
[12] Moradinezhad Dizgah, Azadeh; Dvorkin, Cora, Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation, JCAP, 01 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/01/010
[13] DESI Collaboration; Levi, Michael, The DESI Experiment, a whitepaper for Snowmass 2013 (2013)
[14] LSST collaboration, An overview of the Large Synoptic Survey Telescope (LSST) system, Bull. Amer. Astron. Soc.36 (2004) 108.02.
[15] EUCLID Collaboration; Laureijs, R., Euclid Definition Study Report (2011)
[16] Green, J., Wide-Field InfraRed Survey Telescope (WFIRST) Final Report (2012)
[17] Bruni, Marco; Hidalgo, Juan Carlos; Meures, Nikolai; Wands, David, Non-Gaussian Initial Conditions in CDM: Newtonian, Relativistic, and Primordial Contributions, Astrophys. J., 785, 2 (2014) · doi:10.1088/0004-637X/785/1/2
[18] Bruni, Marco; Hidalgo, Juan Carlos; Wands, David, Einstein’s signature in cosmological large-scale structure, Astrophys. J. Lett., 794, L11 (2014) · doi:10.1088/2041-8205/794/1/L11
[19] Villa, Eleonora; Verde, Licia; Matarrese, Sabino, General relativistic corrections and non-Gaussianity in large scale structure, Class. Quant. Grav., 31 (2014) · Zbl 1306.83070 · doi:10.1088/0264-9381/31/23/234005
[20] Yoo, Jaiyul; Gong, Jinn-Ouk, Exact analytic solution for non-linear density fluctuation in a ΛCDM universe, JCAP, 07 (2016) · doi:10.1088/1475-7516/2016/07/017
[21] Matarrese, Sabino; Pilo, Luigi; Rollo, Rocco, Resilience of long modes in cosmological observables, JCAP, 01 (2021) · Zbl 1484.85017 · doi:10.1088/1475-7516/2021/01/062
[22] Pajer, Enrico; Schmidt, Fabian; Zaldarriaga, Matias, The Observed Squeezed Limit of Cosmological Three-Point Functions, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.083502
[23] de Putter, Roland; Doré, Olivier; Green, Daniel, Is There Scale-Dependent Bias in Single-Field Inflation?, JCAP, 10 (2015) · doi:10.1088/1475-7516/2015/10/024
[24] de Putter, Roland; Doré, Olivier; Green, Daniel; Meyers, Joel, Single-Field Inflation and the Local Ansatz: Distinguishability and Consistency, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.063501
[25] Yoo, Jaiyul; Fitzpatrick, A. Liam; Zaldarriaga, Matias, A New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.083514
[26] Yoo, Jaiyul, General Relativistic Description of the Observed Galaxy Power Spectrum: Do We Understand What We Measure?, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.083508
[27] Bonvin, Camille; Durrer, Ruth, What galaxy surveys really measure, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.063505
[28] Challinor, Anthony; Lewis, Antony, The linear power spectrum of observed source number counts, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.043516
[29] Jeong, Donghui; Schmidt, Fabian; Hirata, Christopher M., Large-scale clustering of galaxies in general relativity, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.023504
[30] Bruni, Marco; Crittenden, Robert; Koyama, Kazuya; Maartens, Roy; Pitrou, Cyril; Wands, David, Disentangling non-Gaussianity, bias and GR effects in the galaxy distribution, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.041301
[31] Kehagias, A.; Moradinezhad Dizgah, A.; Noreña, J.; Perrier, H.; Riotto, A., A Consistency Relation for the Observed Galaxy Bispectrum and the Local non-Gaussianity from Relativistic Corrections, JCAP, 08 (2015) · doi:10.1088/1475-7516/2015/08/018
[32] Di Dio, E.; Perrier, H.; Durrer, R.; Marozzi, G.; Moradinezhad Dizgah, A.; Noreña, J., Non-Gaussianities due to Relativistic Corrections to the Observed Galaxy Bispectrum, JCAP, 03 (2017) · Zbl 1515.83332 · doi:10.1088/1475-7516/2017/03/006
[33] Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy; Clarkson, Chris, A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone, JCAP, 03 (2017) · Zbl 1515.83109 · doi:10.1088/1475-7516/2017/03/034
[34] Jolicoeur, Sheean; Umeh, Obinna; Maartens, Roy; Clarkson, Chris, Imprints of local lightcone projection effects on the galaxy bispectrum. Part II, JCAP, 09 (2017) · Zbl 1515.83375 · doi:10.1088/1475-7516/2017/09/040
[35] Koyama, Kazuya; Umeh, Obinna; Maartens, Roy; Bertacca, Daniele, The observed galaxy bispectrum from single-field inflation in the squeezed limit, JCAP, 07 (2018) · doi:10.1088/1475-7516/2018/07/050
[36] Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Liguori, Michele; Matarrese, Sabino; Verde, Licia, Relativistic wide-angle galaxy bispectrum on the light-cone, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.023531
[37] Umeh, Obinna; Koyama, Kazuya; Maartens, Roy; Schmidt, Fabian; Clarkson, Chris, General relativistic effects in the galaxy bias at second order, JCAP, 05 (2019) · Zbl 1481.83121 · doi:10.1088/1475-7516/2019/05/020
[38] Clarkson, Chris; de Weerd, Eline M.; Jolicoeur, Sheean; Maartens, Roy; Umeh, Obinna, The dipole of the galaxy bispectrum, Mon. Not. Roy. Astron. Soc., 486, L101-L104 (2019) · doi:10.1093/mnrasl/slz066
[39] Umeh, Obinna; Koyama, Kazuya, The galaxy bias at second order in general relativity with Non-Gaussian initial conditions, JCAP, 12 (2019) · Zbl 1543.83239 · doi:10.1088/1475-7516/2019/12/048
[40] Maartens, Roy; Jolicoeur, Sheean; Umeh, Obinna; De Weerd, Eline M.; Clarkson, Chris, Local primordial non-Gaussianity in the relativistic galaxy bispectrum, JCAP, 04 (2021) · Zbl 1485.85002 · doi:10.1088/1475-7516/2021/04/013
[41] Goroff, M. H.; Grinstein, Benjamin; Rey, S. J.; Wise, Mark B., Coupling of Modes of Cosmological Mass Density Fluctuations, Astrophys. J., 311, 6-14 (1986) · doi:10.1086/164749
[42] Makino, Nobuyoshi; Sasaki, Misao; Suto, Yasushi, Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields, Phys. Rev. D, 46, 585-602 (1992) · doi:10.1103/PhysRevD.46.585
[43] Jain, Bhuvnesh; Bertschinger, Edmund, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J., 431, 495 (1994) · doi:10.1086/174502
[44] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[45] Bardeen, James M., Gauge Invariant Cosmological Perturbations, Phys. Rev. D, 22, 1882-1905 (1980) · doi:10.1103/PhysRevD.22.1882
[46] Yoo, Jaiyul, Proper-time hypersurface of nonrelativistic matter flows: Galaxy bias in general relativity, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.123507
[47] Kaiser, Nick, On the Spatial correlations of Abell clusters, Astrophys. J. Lett., 284, L9-L12 (1984) · doi:10.1086/184341
[48] Politzer, H. David; Wise, Mark B., Relations Between Spatial Correlations of Rich Clusters of Galaxies, Astrophys. J. Lett., 285, L1-L3 (1984) · doi:10.1086/184352
[49] Bond, J. R.; Cole, S.; Efstathiou, G.; Kaiser, Nick, Excursion set mass functions for hierarchical Gaussian fluctuations, Astrophys. J., 379, 440 (1991) · doi:10.1086/170520
[50] Fry, James N., The Evolution of Bias, Astrophys. J. Lett., 461, L65 (1996) · doi:10.1086/310006
[51] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[52] Yoo, Jaiyul; Hamaus, Nico; Seljak, Uros; Zaldarriaga, Matias, Going beyond the Kaiser redshift-space distortion formula: a full general relativistic account of the effects and their detectability in galaxy clustering, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.063514
[53] Creminelli, Paolo; Zaldarriaga, Matias, Single field consistency relation for the 3-point function, JCAP, 10 (2004) · doi:10.1088/1475-7516/2004/10/006
[54] Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo, Single-Field Consistency Relations of Large Scale Structure, JCAP, 12 (2013) · doi:10.1088/1475-7516/2013/12/025
[55] Kehagias, A.; Riotto, A., Symmetries and Consistency Relations in the Large Scale Structure of the Universe, Nucl. Phys. B, 873, 514-529 (2013) · Zbl 1282.85004 · doi:10.1016/j.nuclphysb.2013.05.009
[56] Peloso, Marco; Pietroni, Massimo, Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure, JCAP, 05 (2013) · doi:10.1088/1475-7516/2013/05/031
[57] Hui, Lam; Joyce, Austin; Wong, Sam S. C., Inflationary soft theorems revisited: a generalized consistency relation, JCAP, 02 (2019) · Zbl 1541.83162 · doi:10.1088/1475-7516/2019/02/060
[58] Mitsou, Ermis; Yoo, Jaiyul, The spatial gauge-dependence of single-field inflationary bispectra, Phys. Lett. B, 828 (2022) · Zbl 1495.83059 · doi:10.1016/j.physletb.2022.137018
[59] Matarrese, Sabino; Lucchin, Francesco; Bonometto, Silvio A., A PATH INTEGRAL APPROACH TO LARGE SCALE MATTER DISTRIBUTION ORIGINATED BY NONGAUSSIAN FLUCTUATIONS, Astrophys. J. Lett., 310, L21-L26 (1986) · doi:10.1086/184774
[60] Matarrese, Sabino; Verde, Licia, The effect of primordial non-Gaussianity on halo bias, Astrophys. J. Lett., 677, L77-L80 (2008) · doi:10.1086/587840
[61] Slosar, Anze; Hirata, Christopher; Seljak, Uros; Ho, Shirley; Padmanabhan, Nikhil, Constraints on local primordial non-Gaussianity from large scale structure, JCAP, 08 (2008) · doi:10.1088/1475-7516/2008/08/031
[62] Press, William H.; Schechter, Paul, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J., 187, 425-438 (1974) · doi:10.1086/152650
[63] Bardeen, James M.; Bond, J. R.; Kaiser, Nick; Szalay, A. S., The Statistics of Peaks of Gaussian Random Fields, Astrophys. J., 304, 15-61 (1986) · doi:10.1086/164143
[64] Yoo, Jaiyul; Gong, Jinn-Ouk, Relativistic effects and primordial non-Gaussianity in the matter density fluctuation, Phys. Lett. B, 754, 94-98 (2016) · Zbl 1366.83029 · doi:10.1016/j.physletb.2016.01.021
[65] Grimm, Nastassia; Scaccabarozzi, Fulvio; Yoo, Jaiyul; Biern, Sang Gyu; Gong, Jinn-Ouk, Galaxy Power Spectrum in General Relativity, JCAP, 11 (2020) · Zbl 1486.85013 · doi:10.1088/1475-7516/2020/11/064
[66] Feldman, Hume A.; Kaiser, Nick; Peacock, John A., Power spectrum analysis of three-dimensional redshift surveys, Astrophys. J., 426, 23-37 (1994) · doi:10.1086/174036
[67] Tegmark, Max; Hamilton, Andrew J. S.; Strauss, Michael A.; Vogeley, Michael S.; Szalay, Alexander S., Measuring the galaxy power spectrum with future redshift surveys, Astrophys. J., 499, 555-576 (1998) · doi:10.1086/305663
[68] Raccanelli, Alvise; Samushia, Lado; Percival, Will J., Simulating Redshift-Space Distortions for Galaxy Pairs with Wide Angular Separation, Mon. Not. Roy. Astron. Soc., 409, 1525 (2010) · doi:10.1111/j.1365-2966.2010.17388.x
[69] Yoo, Jaiyul; Desjacques, Vincent, All-Sky Analysis of the General Relativistic Galaxy Power Spectrum, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.023502
[70] Yoo, Jaiyul; Seljak, Uros, Joint Analysis of Gravitational Lensing, Clustering and Abundance: toward the Unification of Large-Scale Structure Analysis, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083504
[71] Ellis, G. F. R.; Bruni, M., Covariant and Gauge Invariant Approach to Cosmological Density Fluctuations, Phys. Rev. D, 40, 1804-1818 (1989) · doi:10.1103/PhysRevD.40.1804
[72] Bruni, Marco; Sonego, Sebastiano, Observables and gauge invariance in the theory of nonlinear space-time perturbations: Letter to the editor, Class. Quant. Grav., 16, L29-L36 (1999) · Zbl 0938.83011 · doi:10.1088/0264-9381/16/7/101
[73] Yoo, Jaiyul; Durrer, Ruth, Gauge-Transformation Properties of Cosmological Observables and its Application to the Light-Cone Average, JCAP, 09 (2017) · Zbl 1515.83465 · doi:10.1088/1475-7516/2017/09/016
[74] Buchert, Thomas; Ehlers, Jurgen, Averaging inhomogeneous Newtonian cosmologies, Astron. Astrophys., 320, 1-7 (1997)
[75] Mukhanov, Viatcheslav F.; Abramo, L. Raul W.; Brandenberger, Robert H., On the Back reaction problem for gravitational perturbations, Phys. Rev. Lett., 78, 1624-1627 (1997) · doi:10.1103/PhysRevLett.78.1624
[76] Hirata, Christopher M.; Seljak, Uros, Can superhorizon cosmological perturbations explain the acceleration of the Universe?, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.083501
[77] Larena, Julien, Spatially averaged cosmology in an arbitrary coordinate system, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.084006
[78] Ishibashi, Akihiro; Wald, Robert M., Can the acceleration of our universe be explained by the effects of inhomogeneities?, Class. Quant. Grav., 23, 235-250 (2006) · Zbl 1148.83027 · doi:10.1088/0264-9381/23/1/012
[79] Clarkson, Chris; Ellis, George; Larena, Julien; Umeh, Obinna, Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology, Rept. Prog. Phys., 74 (2011) · doi:10.1088/0034-4885/74/11/112901
[80] Yoo, Jaiyul; Mitsou, Ermis; Grimm, Nastassia; Durrer, Ruth; Refregier, Alexandre, Cosmological Information Contents on the Light-Cone, JCAP, 12 (2019) · Zbl 1542.83069 · doi:10.1088/1475-7516/2019/12/015
[81] Yoo, Jaiyul; Mitsou, Ermis; Dirian, Yves; Durrer, Ruth, Background photon temperature T̅: a new cosmological Parameter?, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.063510
[82] Baumgartner, Sandra; Yoo, Jaiyul, Monopole Fluctuation of the CMB and its Gauge Invariance, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.063516
[83] Mitsou, Ermis; Yoo, Jaiyul; Durrer, Ruth; Scaccabarozzi, Fulvio; Tansella, Vittorio, General and consistent statistics for cosmological observations, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.033004
[84] Weinberg, Steven, Adiabatic modes in cosmology, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.123504
[85] Creminelli, Paolo; Noreña, Jorge; Simonović, Marko, Conformal consistency relations for single-field inflation, JCAP, 07 (2012) · doi:10.1088/1475-7516/2012/07/052
[86] Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, Conformal Symmetries of Adiabatic Modes in Cosmology, JCAP, 08 (2012) · doi:10.1088/1475-7516/2012/08/017
[87] Cheung, Clifford; Creminelli, Paolo; Fitzpatrick, A. Liam; Kaplan, Jared; Senatore, Leonardo, The Effective Field Theory of Inflation, JHEP, 03, 014 (2008) · doi:10.1088/1126-6708/2008/03/014
[88] Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology, JCAP, 01 (2014) · doi:10.1088/1475-7516/2014/01/039
[89] Dai, Liang; Pajer, Enrico; Schmidt, Fabian, Conformal Fermi Coordinates, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/043
[90] Cabass, Giovanni; Pajer, Enrico; Schmidt, Fabian, How Gaussian can our Universe be?, JCAP, 01 (2017) · Zbl 1515.83316 · doi:10.1088/1475-7516/2017/01/003
[91] Mitsou, Ermis; Yoo, Jaiyul, Tetrad Formalism for Exact Cosmological Observables (2020), Springer · Zbl 1470.83003
[92] Mitsou, Ermis; Yoo, Jaiyul, Large gauge transformations, local coordinates and cosmological observables (2022) · Zbl 1515.83090
[93] Yoo, Jaiyul, Complete Treatment of Galaxy Two-Point Statistics: gravitational Lensing Effects and Redshift-Space Distortions, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.023517
[94] Fry, James N.; Gaztanaga, Enrique, Biasing and hierarchical statistics in large scale structure, Astrophys. J., 413, 447-452 (1993) · doi:10.1086/173015
[95] Scherrer, Robert J.; Weinberg, David H., Constraints on the effects of locally-biased galaxy formation, Astrophys. J., 504, 607-611 (1998) · doi:10.1086/306113
[96] Sheth, Ravi K.; Tormen, Giuseppe, Large scale bias and the peak background split, Mon. Not. Roy. Astron. Soc., 308, 119 (1999) · doi:10.1046/j.1365-8711.1999.02692.x
[97] Baldauf, Tobias; Seljak, Uros; Desjacques, Vincent; McDonald, Patrick, Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083540
[98] Dalal, Neal; Pen, Ue-Li; Seljak, Uros, Large-scale BAO signatures of the smallest galaxies, JCAP, 11 (2010) · doi:10.1088/1475-7516/2010/11/007
[99] Yoo, Jaiyul; Dalal, Neal; Seljak, Uros, Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements, JCAP, 07 (2011) · doi:10.1088/1475-7516/2011/07/018
[100] Yoo, Jaiyul; Seljak, Uroš, Signatures of first stars in galaxy surveys: multitracer analysis of the supersonic relative velocity effect and the constraints from the BOSS power spectrum measurements, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.103520
[101] Schmidt, Fabian, Effect of relative velocity and density perturbations between baryons and dark matter on the clustering of galaxies, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.063508
[102] McDonald, Patrick, Primordial non-Gaussianity: large-scale structure signature in the perturbative bias model, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123519
[103] McDonald, Patrick; Roy, Arabindo, Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS, JCAP, 08 (2009) · doi:10.1088/1475-7516/2009/08/020
[104] Porto, Rafael A.; Senatore, Leonardo; Zaldarriaga, Matias, The Lagrangian-space Effective Field Theory of Large Scale Structures, JCAP, 05 (2014) · doi:10.1088/1475-7516/2014/05/022
[105] Senatore, Leonardo, Bias in the Effective Field Theory of Large Scale Structures, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/007
[106] Vlah, Zvonimir; White, Martin; Aviles, Alejandro, A Lagrangian effective field theory, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/09/014
[107] Schmidt, Fabian; Elsner, Franz; Jasche, Jens; Nguyen, Nhat Minh; Lavaux, Guilhem, A rigorous EFT-based forward model for large-scale structure, JCAP, 01 (2019) · Zbl 1542.85007 · doi:10.1088/1475-7516/2019/01/042
[108] Vlah, Zvonimir; Chisari, Nora Elisa; Schmidt, Fabian, An EFT description of galaxy intrinsic alignments, JCAP, 01 (2020) · Zbl 1489.85019 · doi:10.1088/1475-7516/2020/01/025
[109] SDSS Collaboration; Eisenstein, Daniel J., Spectroscopic target selection for the Sloan Digital Sky Survey: the Luminous red galaxy sample, Astron. J., 122, 2267 (2001) · doi:10.1086/323717
[110] White, Martin, The clustering of massive galaxies at z 0.5 from the first semester of BOSS data, Astrophys. J., 728, 126 (2011) · doi:10.1088/0004-637X/728/2/126
[111] Yoo, Jaiyul; Zaldarriaga, Matias, Beyond the Linear-Order Relativistic Effect in Galaxy Clustering: second-Order Gauge-Invariant Formalism, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.023513
[112] Di Dio, Enea; Durrer, Ruth; Marozzi, Giovanni; Montanari, Francesco, Galaxy number counts to second order and their bispectrum, JCAP, 12 (2014) · doi:10.1088/1475-7516/2014/12/017
[113] Bertacca, Daniele; Maartens, Roy; Clarkson, Chris, Observed galaxy number counts on the lightcone up to second order: I. Main result, JCAP, 09 (2014) · doi:10.1088/1475-7516/2014/09/037
[114] Bertacca, Daniele; Maartens, Roy; Clarkson, Chris, Observed galaxy number counts on the lightcone up to second order: II. Derivation, JCAP, 11 (2014) · doi:10.1088/1475-7516/2014/11/013
[115] Hwang, Jai-chan; Noh, Hyerim, Second order perturbations of a zero-pressure cosmological medium: Proofs of the relativistic-Newtonian correspondence, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.044011
[116] Hwang, Jai-chan; Noh, Hyerim, Third order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.044012
[117] Hwang, Jai-Chan; Noh, Hyerim, Why Newton’s gravity is practically reliable in the large-scale cosmological simulations, Mon. Not. Roy. Astron. Soc., 367, 1515 (2006) · doi:10.1111/j.1365-2966.2006.10067.x
[118] Bouchet, F. R.; Colombi, S.; Hivon, E.; Juszkiewicz, R., Perturbative Lagrangian approach to gravitational instability, Astron. Astrophys., 296, 575 (1995)
[119] Bertacca, Daniele; Bartolo, Nicola; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino, Galaxy bias and gauges at second order in General Relativity, Class. Quant. Grav., 32 (2015) · Zbl 1327.83262 · doi:10.1088/0264-9381/32/17/175019
[120] J.E. Gunn, On the propagation of light in inhomogeneous cosmologies. I. Mean effects, Astrophys. J.150 (1967) 737. · doi:10.1086/149378
[121] Sachs, R. K.; Wolfe, A. M., Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J., 147, 73-90 (1967) · Zbl 1150.83002 · doi:10.1007/s10714-007-0448-9
[122] Kaiser, N., Clustering in real space and in redshift space, Mon. Not. Roy. Astron. Soc., 227, 1-27 (1987)
[123] J. Miralda-Escudé, The correlation function of galaxy ellipticities produced by gravitational lensing, Astrophys. J.380 (1991) 1. · doi:10.1086/170555
[124] Kaiser, Nick, Weak gravitational lensing of distant galaxies, Astrophys. J., 388, 272 (1992) · doi:10.1086/171151
[125] R. Narayan, Gravitational lensing and quasar-galaxy correlations, Astrophys. J.339 (1989) L53. · doi:10.1086/185418
[126] Bartelmann, Matthias, Cosmological parameters from angular correlations between QSOs and galaxies, Astron. Astrophys., 298, 661 (1995)
[127] Jain, Bhuvnesh, Magnification effects as measures of large scale structure, Astrophys. J. Lett., 580, L3-L6 (2002) · doi:10.1086/345468
[128] Yoo, Jaiyul, Relativistic Effect in Galaxy Clustering, Class. Quant. Grav., 31 (2014) · Zbl 1306.83013 · doi:10.1088/0264-9381/31/23/234001
[129] Mo, H. J.; White, Simon D. M., An Analytic model for the spatial clustering of dark matter halos, Mon. Not. Roy. Astron. Soc., 282, 347 (1996) · doi:10.1093/mnras/282.2.347
[130] Catelan, Paolo; Lucchin, Francesco; Matarrese, Sabino; Porciani, Cristiano, The bias field of dark matter halos, Mon. Not. Roy. Astron. Soc., 297, 692-712 (1998) · doi:10.1046/j.1365-8711.1998.01455.x
[131] Catelan, Paolo; Porciani, Cristiano; Kamionkowski, Marc, Two ways of biasing galaxy formation, Mon. Not. Roy. Astron. Soc., 318, 39 (2000) · doi:10.1046/j.1365-8711.2000.04023.x
[132] Sheth, Ravi K.; Mo, H. J.; Tormen, Giuseppe, Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes, Mon. Not. Roy. Astron. Soc., 323, 1 (2001) · doi:10.1046/j.1365-8711.2001.04006.x
[133] Schmidt, Fabian; Jeong, Donghui; Desjacques, Vincent, Peak-Background Split, Renormalization, and Galaxy Clustering, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.023515
[134] Scoccimarro, Roman; Sefusatti, Emiliano; Zaldarriaga, Matias, Probing primordial non-Gaussianity with large - scale structure, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.103513
[135] Sefusatti, Emiliano; Komatsu, Eiichiro, The Bispectrum of Galaxies from High-Redshift Galaxy Surveys: primordial Non-Gaussianity and Non-Linear Galaxy Bias, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.083004
[136] Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre, Gauge-Invariant Formalism of Cosmological Weak Lensing, JCAP, 04 (2018) · Zbl 1536.83210 · doi:10.1088/1475-7516/2018/04/029
[137] Komatsu, Eiichiro; Spergel, David N., Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.063002
[138] Yoo, Jaiyul; Scaccabarozzi, Fulvio, Unified Treatment of the Luminosity Distance in Cosmology, JCAP, 09 (2016) · doi:10.1088/1475-7516/2016/09/046
[139] Biern, Sang Gyu; Yoo, Jaiyul, Correlation function of the luminosity distances, JCAP, 09 (2017) · doi:10.1088/1475-7516/2017/09/026
[140] Scaccabarozzi, Fulvio; Yoo, Jaiyul; Biern, Sang Gyu, Galaxy Two-Point Correlation Function in General Relativity, JCAP, 10 (2018) · Zbl 1536.83201 · doi:10.1088/1475-7516/2018/10/024
[141] Magi, Matteo; Yoo, Jaiyul, Second-order gauge-invariant formalism for the cosmological observables: complete verification of their gauge-invariance (2022) · Zbl 1512.83067
[142] J. Binney and T. Quinn, Gaussian random fields in spherical coordinates, Mon. Not. Roy. Astron. Soc.249 (1991) 678. · doi:10.1093/mnras/249.4.678
[143] Fisher, K. B.; Lahav, O.; Hoffman, Y.; Lynden-Bell, Donald; Zaroubi, S., Wiener reconstruction of density, velocity, and potential fields from all sky galaxy redshift surveys, Mon. Not. Roy. Astron. Soc., 272, 885 (1995)
[144] Heavens, A. F.; Taylor, A. N., A Spherical Harmonic Analysis of Redshift Space, Mon. Not. Roy. Astron. Soc., 275, 483-497 (1995) · doi:10.1093/mnras/275.2.483
[145] Rassat, A.; Refregier, A., 3D Spherical Analysis of Baryon Acoustic Oscillations, Astron. Astrophys., 540, A115 (2012) · doi:10.1051/0004-6361/201118638
[146] Noh, Hyerim; Hwang, Jai-chan, Second-order perturbations of the Friedmann world model, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.104011
[147] Ma, Chung-Pei; Bertschinger, Edmund, Cosmological perturbation theory in the synchronous versus conformal Newtonian gauge (1994)
[148] P.J.E. Peebles, The large-scale structure of the universe, Princeton University Press (1980). · Zbl 1422.85005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.