×

Partially massless fields during inflation. (English) Zbl 1390.83435

Summary: The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81T10 Model quantum field theories

Software:

xAct

References:

[1] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
[2] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J.116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
[3] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J.517 (1999) 565 [astro-ph/9812133] [INSPIRE].
[4] M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, in Unity from duality: gravity, gauge theory and strings. Proceedings, NATO Advanced Study Institute, Euro Summer School, 76\^{}{th}session, Les Houches France, 30 July-31 August 2001, pg. 423 [hep-th/0110007] [INSPIRE]. · Zbl 1388.83890
[5] Anninos, D., De Sitter musings, Int. J. Mod. Phys., A 27, 1230013, (2012) · Zbl 1247.83068 · doi:10.1142/S0217751X1230013X
[6] E.T. Akhmedov, Lecture notes on interacting quantum fields in de Sitter space, Int. J. Mod. Phys.D 23 (2014) 1430001 [arXiv:1309.2557] [INSPIRE]. · Zbl 1284.81001
[7] Bargmann, V.; Wigner, EP, Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci., 34, 211, (1948) · Zbl 0030.42306 · doi:10.1073/pnas.34.5.211
[8] E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals Math.40 (1939)149 [Nucl. Phys. Proc. Suppl.B 6 (1989) 9] [INSPIRE]. · JFM 65.1129.01
[9] Deser, S.; Waldron, A., Arbitrary spin representations in de Sitter from ds/CFT with applications to ds supergravity, Nucl. Phys., B 662, 379, (2003) · Zbl 1040.81068 · doi:10.1016/S0550-3213(03)00348-1
[10] Newton, T., A note on the representations of the de Sitter group, Ann. Math., 51, 730, (1950) · Zbl 0038.01702 · doi:10.2307/1969376
[11] L. Thomas, On unitary representations of the group of de Sitter space, Ann. Math.42 (1941) 113. · Zbl 0024.30001
[12] M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett.B 243 (1990) 378 [INSPIRE]. · Zbl 1332.81084
[13] M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett.B 285 (1992) 225 [INSPIRE].
[14] Bekaert, X.; Grigoriev, M., Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys., B 876, 667, (2013) · Zbl 1284.81188 · doi:10.1016/j.nuclphysb.2013.08.015
[15] K.B. Alkalaev, On higher spin extension of the Jackiw-Teitelboim gravity model, J. Phys.A 47 (2014)365401 [arXiv:1311.5119] [INSPIRE]. · Zbl 1300.83013
[16] K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov, Uniformizing higher-spin equations, J. Phys.A 48 (2015) 015401 [arXiv:1409.6507] [INSPIRE]. · Zbl 1351.81058
[17] Joung, E.; Mkrtchyan, K., Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP, 01, 003, (2016) · Zbl 1388.83593 · doi:10.1007/JHEP01(2016)003
[18] Brust, C.; Hinterbichler, K., Partially massless higher-spin theory, JHEP, 02, 086, (2017) · Zbl 1377.81062 · doi:10.1007/JHEP02(2017)086
[19] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[20] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP10 (2004) 006 [astro-ph/0407059] [INSPIRE].
[21] X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
[22] Chen, X.; Wang, Y., Quasi-single field inflation and non-gaussianities, JCAP, 04, 027, (2010) · doi:10.1088/1475-7516/2010/04/027
[23] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051, (2013) · Zbl 1342.83110 · doi:10.1007/JHEP06(2013)051
[24] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
[25] Mirbabayi, M.; Simonović, M., Effective theory of squeezed correlation functions, JCAP, 03, 056, (2016) · doi:10.1088/1475-7516/2016/03/056
[26] X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP02 (2016)013 [arXiv:1509.03930] [INSPIRE].
[27] H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP12 (2016)040 [arXiv:1607.03735] [INSPIRE]. · Zbl 1390.83465
[28] A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys.B 282 (1987) 397 [INSPIRE].
[29] S. Deser and A. Waldron, Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations, Phys. Lett.B 513 (2001) 137 [hep-th/0105181] [INSPIRE]. · Zbl 0969.81602
[30] Yu. M. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].
[31] L. Bordin, P. Creminelli, A. Khmelnitsky, M. Mirbabayi and L. Senatore, Spinning cosmology, work in progress.
[32] Kehagias, A.; Riotto, A., On the inflationary perturbations of massive higher-spin fields, JCAP, 07, 046, (2017) · Zbl 1515.83378 · doi:10.1088/1475-7516/2017/07/046
[33] S. Endlich, A. Nicolis and J. Wang, Solid inflation, JCAP10 (2013) 011 [arXiv:1210.0569] [INSPIRE].
[34] F. Piazza, D. Pirtskhalava, R. Rattazzi and O. Simon, Gaugid inflation, JCAP11 (2017) 041 [arXiv:1706.03402] [INSPIRE]. · Zbl 1515.83431
[35] M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond.A 173 (1939) 211 [INSPIRE]. · JFM 65.1532.01
[36] B. de Wit, Supergravity, in Unity from duality: gravity, gauge theory and strings. Proceedings, NATO Advanced Study Institute, Euro Summer School, 76\^{}{th}session, Les Houches France, 30 July-31 August 2001, pg. 1 [hep-th/0212245] [INSPIRE].
[37] Deser, S.; Waldron, A., Gauge invariances and phases of massive higher spins in (A)ds, Phys. Rev. Lett., 87, (2001) · Zbl 0969.81601 · doi:10.1103/PhysRevLett.87.031601
[38] S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys.B 607 (2001)577 [hep-th/0103198] [INSPIRE]. · Zbl 0969.81601
[39] L. Bernard, C. Deffayet, K. Hinterbichler and M. von Strauss, Partially massless graviton on beyond Einstein spacetimes, Phys. Rev.D 95 (2017) 124036 [arXiv:1703.02538] [INSPIRE].
[40] Aros, R.; Iazeolla, C.; Noreña, J.; Sezgin, E.; Sundell, P.; Yin, Y., FRW and domain walls in higher spin gravity, JHEP, 03, 153, (2018) · Zbl 1388.83890 · doi:10.1007/JHEP03(2018)153
[41] I. Cortese and M. Kulaxizi, General backgrounds for higher spin massive particles, arXiv:1711.11535 [INSPIRE]. · Zbl 1333.83049
[42] Bekaert, X.; Grigoriev, M.; Skvortsov, ED, Higher spin extension of Fefferman-graham construction, Universe, 4, 17, (2018) · doi:10.3390/universe4020017
[43] Weinberg, S., Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev., 135, b1049, (1964) · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[44] S.R. Coleman and J. Mandula, All possible symmetries of the S-matrix, Phys. Rev.159 (1967)1251 [INSPIRE]. · Zbl 0168.23702
[45] S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett.B 96 (1980) 59 [INSPIRE].
[46] Bekaert, X.; Boulanger, N.; Sundell, P., How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys., 84, 987, (2012) · doi:10.1103/RevModPhys.84.987
[47] R. Rahman and M. Taronna, From higher spins to strings: a primer, arXiv:1512.07932 [INSPIRE]. · Zbl 1359.81139
[48] M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE]. · Zbl 0990.81084
[49] S. Giombi, Higher spin-CFT duality, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015\()\), Boulder CO U.S.A., 1-26 June 2015, World Scientific, Singapore, (2017), pg. 137 [arXiv:1607.02967] [INSPIRE]. · Zbl 1359.81161
[50] D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
[51] Chen, X.; Wang, Y.; Xianyu, Z-Z, Standard model mass spectrum in inflationary universe, JHEP, 04, 058, (2017) · Zbl 1378.85005 · doi:10.1007/JHEP04(2017)058
[52] S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, arXiv:1711.03988 [INSPIRE]. · Zbl 1391.85005
[53] Sefusatti, E.; Fergusson, JR; Chen, X.; Shellard, EPS, Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background, JCAP, 08, 033, (2012) · doi:10.1088/1475-7516/2012/08/033
[54] Meerburg, PD; Münchmeyer, M.; Muñoz, JB; Chen, X., Prospects for cosmological collider physics, JCAP, 03, 050, (2017) · doi:10.1088/1475-7516/2017/03/050
[55] Gleyzes, J.; Putter, R.; Green, D.; Dorè, O., Biasing and the search for primordial non-gaussianity beyond the local type, JCAP, 04, 002, (2017) · Zbl 1515.85032 · doi:10.1088/1475-7516/2017/04/002
[56] Moradinezhad Dizgah, A.; Dvorkin, C., Scale-dependent galaxy bias from massive particles with spin during inflation, JCAP, 01, 010, (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/01/010
[57] A. Moradinezhad Dizgah, H. Lee, J.B. Muñoz and C. Dvorkin, Galaxy bispectrum from massive spinning particles, arXiv:1801.07265 [INSPIRE].
[58] C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space, Phys. Rev.D 20 (1979)848 [INSPIRE].
[59] R.R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP01 (2012)064 [arXiv:0707.4437] [INSPIRE]. · Zbl 1306.81123
[60] J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE]. · Zbl 1258.83002
[61] R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, Nucl. Phys.B 885 (2014) 734 [arXiv:1404.3712] [INSPIRE]. · Zbl 1323.81088
[62] S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav.1 (1970) 9 [gr-qc/0411023] [INSPIRE].
[63] R.M. Wald, Spin-2 fields and general covariance, Phys. Rev.D 33 (1986) 3613 [INSPIRE].
[64] E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in (A)dS, JHEP07 (2012) 041 [arXiv:1203.6578] [INSPIRE]. · Zbl 1246.81137
[65] Joung, E.; Lopez, L.; Taronna, M., Generating functions of (partially-)massless higher-spin cubic interactions, JHEP, 01, 168, (2013) · doi:10.1007/JHEP01(2013)168
[66] Cheung, C.; Creminelli, P.; Fitzpatrick, AL; Kaplan, J.; Senatore, L., The effective field theory of inflation, JHEP, 03, 014, (2008) · doi:10.1088/1126-6708/2008/03/014
[67] Creminelli, P.; Luty, MA; Nicolis, A.; Senatore, L., Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP, 12, 080, (2006) · Zbl 1226.83089 · doi:10.1088/1126-6708/2006/12/080
[68] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
[69] Creminelli, P.; Noreña, J.; Simonović, M., Conformal consistency relations for single-field inflation, JCAP, 07, 052, (2012) · doi:10.1088/1475-7516/2012/07/052
[70] P. Creminelli, A. Perko, L. Senatore, M. Simonović and G. Trevisan, The physical squeezed limit: consistency relations at order q\^{}{2}, JCAP11 (2013) 015 [arXiv:1307.0503] [INSPIRE].
[71] E. Pajer, F. Schmidt and M. Zaldarriaga, The observed squeezed limit of cosmological three-point functions, Phys. Rev.D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].
[72] Hinterbichler, K.; Hui, L.; Khoury, J., An infinite set of Ward identities for adiabatic modes in cosmology, JCAP, 01, 039, (2014) · doi:10.1088/1475-7516/2014/01/039
[73] Bordin, L.; Creminelli, P.; Mirbabayi, M.; Noreña, J., Tensor squeezed limits and the higuchi bound, JCAP, 09, 041, (2016) · doi:10.1088/1475-7516/2016/09/041
[74] Assassi, V.; Baumann, D.; Green, D., On soft limits of inflationary correlation functions, JCAP, 11, 047, (2012) · doi:10.1088/1475-7516/2012/11/047
[75] A. Kehagias and A. Riotto, Operator product expansion of inflationary correlators and conformal symmetry of de Sitter, Nucl. Phys.B 864 (2012) 492 [arXiv:1205.1523] [INSPIRE]. · Zbl 1262.83065
[76] A. Kehagias and A. Riotto, The four-point correlator in multifield inflation, the operator product expansion and the symmetries of de Sitter, Nucl. Phys.B 868 (2013) 577 [arXiv:1210.1918] [INSPIRE]. · Zbl 1262.83066
[77] Pimentel, GL, Inflationary consistency conditions from a wavefunctional perspective, JHEP, 02, 124, (2014) · Zbl 1333.83049 · doi:10.1007/JHEP02(2014)124
[78] T. Suyama and M. Yamaguchi, Non-Gaussianity in the modulated reheating scenario, Phys. Rev.D 77 (2008) 023505 [arXiv:0709.2545] [INSPIRE]. · Zbl 0969.81601
[79] Smith, KM; LoVerde, M.; Zaldarriaga, M., A universal bound on N -point correlations from inflation, Phys. Rev. Lett., 107, 191301, (2011) · doi:10.1103/PhysRevLett.107.191301
[80] Seery, D.; Sloth, MS; Vernizzi, F., Inflationary trispectrum from graviton exchange, JCAP, 03, 018, (2009)
[81] P.D. Meerburg, J. Meyers, A. van Engelen and Y. Ali-Ha¨ımoud, CMB B-mode non-Gaussianity, Phys. Rev.D 93 (2016) 123511 [arXiv:1603.02243] [INSPIRE].
[82] CMB-S4 collaboration, K.N. Abazajian et al., CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].
[83] L. Dai, D. Jeong and M. Kamionkowski, Anisotropic imprint of long-wavelength tensor perturbations on cosmic structure, Phys. Rev.D 88 (2013) 043507 [arXiv:1306.3985] [INSPIRE].
[84] D. Jeong and M. Kamionkowski, Clustering fossils from the early universe, Phys. Rev. Lett.108 (2012)251301 [arXiv:1203.0302] [INSPIRE].
[85] Dimastrogiovanni, E.; Fasiello, M.; Jeong, D.; Kamionkowski, M., Inflationary tensor fossils in large-scale structure, JCAP, 12, 050, (2014) · doi:10.1088/1475-7516/2014/12/050
[86] N. Bartolo, A. Kehagias, M. Liguori, A. Riotto, M. Shiraishi and V. Tansella, Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra, Phys. Rev.D 97 (2018) 023503 [arXiv:1709.05695] [INSPIRE].
[87] Franciolini, G.; Kehagias, A.; Riotto, A., Imprints of spinning particles on primordial cosmological perturbations, JCAP, 02, 023, (2018) · Zbl 1527.83131 · doi:10.1088/1475-7516/2018/02/023
[88] Byrnes, CT; Choi, K-Y, Review of local non-gaussianity from multi-field inflation, Adv. Astron., 2010, 724525, (2010) · doi:10.1155/2010/724525
[89] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
[90] D. Anninos, F. Denef, R. Monten and Z. Sun, Higher spin de Sitter Hilbert space, arXiv:1711.10037 [INSPIRE]. · Zbl 1284.81188
[91] A. Cooray, C. Li and A. Melchiorri, The trispectrum of 21 cm background anisotropies as a probe of primordial non-Gaussianity, Phys. Rev.D 77 (2008) 103506 [arXiv:0801.3463] [INSPIRE].
[92] D. Yamauchi and K. Takahashi, Probing higher-order primordial non-Gaussianity with galaxy surveys, Phys. Rev.D 93 (2016) 123506 [arXiv:1509.07585] [INSPIRE].
[93] Bartolo, N.; Liguori, M.; Shiraishi, M., Primordial trispectra and CMB spectral distortions, JCAP, 03, 029, (2016) · doi:10.1088/1475-7516/2016/03/029
[94] Shiraishi, M.; Nitta, D.; Yokoyama, S.; Ichiki, K.; Takahashi, K., CMB bispectrum from primordial scalar, vector and tensor non-gaussianities, Prog. Theor. Phys., 125, 795, (2011) · Zbl 1220.83051 · doi:10.1143/PTP.125.795
[95] Shiraishi, M.; Liguori, M.; Fergusson, JR, CMB bounds on tensor-scalar-scalar inflationary correlations, JCAP, 01, 016, (2018) · doi:10.1088/1475-7516/2018/01/016
[96] J.M. Martín-García, xAct, efficient tensor computer algebra for the Wolfram language, http://www.xact.es/.
[97] Hinterbichler, K.; Joyce, A., Manifest duality for partially massless higher spins, JHEP, 09, 141, (2016) · Zbl 1390.83285 · doi:10.1007/JHEP09(2016)141
[98] D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev.D 6 (1972) 3368 [INSPIRE]. · Zbl 0030.42306
[99] G. Anastasiou and R. Olea, From conformal to Einstein gravity, Phys. Rev.D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE]. · Zbl 1383.83102
[100] S. Deser, E. Joung and A. Waldron, Partial masslessness and conformal gravity, J. Phys.A 46 (2013)214019 [arXiv:1208.1307] [INSPIRE]. · Zbl 1269.83058
[101] R. Manvelyan and W. Rühl, Conformal coupling of higher spin gauge fields to a scalar field in AdS_{4}and generalized Weyl invariance, Phys. Lett.B 593 (2004) 253 [hep-th/0403241] [INSPIRE]. · Zbl 1247.81323
[102] R. Manvelyan and K. Mkrtchyan, Conformal invariant interaction of a scalar field with the higher spin field in AdS_{\(D\)} , Mod. Phys. Lett.A 25 (2010) 1333 [arXiv:0903.0058] [INSPIRE]. · Zbl 1188.81128
[103] X. Bekaert and E. Meunier, Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions, JHEP11 (2010)116 [arXiv:1007.4384] [INSPIRE]. · Zbl 1294.81314
[104] Dymarsky, A.; Farnsworth, K.; Komargodski, Z.; Luty, MA; Prilepina, V., Scale invariance, conformality and generalized free fields, JHEP, 02, 099, (2016) · Zbl 1388.81807 · doi:10.1007/JHEP02(2016)099
[105] A. Bzowski and K. Skenderis, Comments on scale and conformal invariance, JHEP08 (2014)027 [arXiv:1402.3208] [INSPIRE].
[106] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning conformal correlators, JHEP, 11, 071, (2011) · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[107] Anninos, D.; Anous, T.; Freedman, DZ; Konstantinidis, G., Late-time structure of the bunch-Davies de Sitter wavefunction, JCAP, 11, 048, (2015) · doi:10.1088/1475-7516/2015/11/048
[108] Ghosh, A.; Kundu, N.; Raju, S.; Trivedi, SP, Conformal invariance and the four point scalar correlator in slow-roll inflation, JHEP, 07, 011, (2014) · doi:10.1007/JHEP07(2014)011
[109] A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP03 (2016) 066 [arXiv:1510.08442] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.