×

Primordial non-Gaussianity from biased tracers: likelihood analysis of real-space power spectrum and bispectrum. (English) Zbl 1485.83168

Summary: Upcoming galaxy redshift surveys promise to significantly improve current limits on primordial non-Gaussianity (PNG) through measurements of 2- and 3-point correlation functions in Fourier space. However, realizing the full potential of this dataset is contingent upon having both accurate theoretical models and optimized analysis methods. Focusing on the local model of PNG, parameterized by \(f_{\mathrm{NL}}\), we perform a Monte-Carlo Markov Chain analysis to confront perturbation theory predictions of the halo power spectrum and bispectrum in real space against a suite of N-body simulations. We model the halo bispectrum at tree-level, including all contributions linear and quadratic in \(f_{\mathrm{NL}}\), and the halo power spectrum at 1-loop, including tree-level terms up to quadratic order in \(f_{\mathrm{NL}}\), and all loops induced by local PNG linear in \(f_{\mathrm{NL}}\). Keeping the cosmological parameters fixed, we examine the effect of informative priors on the linear non-Gaussian bias parameter on the statistical inference of \(f_{\mathrm{NL}}\). A conservative analysis of the combined power spectrum and bispectrum, in which only loose priors are imposed and all parameters are marginalized over, can improve the constraint on by more than a factor of 5 relative to the power spectrum-only measurement. Imposing a strong prior on \(b_\phi\), or assuming bias relations for both \(b_\phi\) and \(b_{\phi\delta}\) (motivated by a universal mass function assumption), improves the constraints further by a factor of few. In this case, however, we find a significant systematic shift in the inferred value of \(f_{\mathrm{NL}}\) if the same range of wavenumber is used. Likewise, a Poisson noise assumption can lead to significant systematics, and it is thus essential to leave all the stochastic amplitudes free.

MSC:

83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
78A45 Diffraction, scattering
62H20 Measures of association (correlation, canonical correlation, etc.)
65C05 Monte Carlo methods
60J05 Discrete-time Markov processes on general state spaces
05C05 Trees
83C40 Gravitational energy and conservation laws; groups of motions
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] Planck Collaboration; Akrami, Y., Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys., 641, A9 (2020) · doi:10.1051/0004-6361/201935891
[2] Amendola, Luca, Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel., 21, 2 (2018) · doi:10.1007/s41114-017-0010-3
[3] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: Science,Targeting, and Survey Design (2016)
[4] Doré, Olivier, Cosmology with the SPHEREX All-Sky Spectral Survey (2014)
[5] LSST Science, LSST Project Collaboration; Abell, Paul A., LSST Science Book, Version 2.0 (2009)
[6] Kovetz, Ely D., Line-Intensity Mapping: 2017 Status Report (2017)
[7] Camera, Stefano; Santos, Mario G.; Ferreira, Pedro G.; Ferramacho, Luis, Cosmology on Ultra-Large Scales with HI Intensity Mapping: Limits on Primordial non-Gaussianity, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.171302
[8] Moradinezhad Dizgah, Azadeh; Keating, Garrett K.; Fialkov, Anastasia, Probing Cosmic Origins with CO and [CII] Emission Lines, Astrophys. J. Lett., 870, L4 (2019) · doi:10.3847/2041-8213/aaf813
[9] Moradinezhad Dizgah, Azadeh; Keating, Garrett K., Line intensity mapping with [CII] and CO(1-0) as probes of primordial non-Gaussianity, Astrophys. J., 872, 126 (2019) · doi:10.3847/1538-4357/aafd36
[10] Karagiannis, Dionysios; Slosar, Anže; Liguori, Michele, Forecasts on Primordial non-Gaussianity from 21 cm Intensity Mapping experiments, JCAP, 11 (2020) · doi:10.1088/1475-7516/2020/11/052
[11] Liu, R. Henry; Breysse, Patrick C., Coupling parsec and gigaparsec scales: Primordial non-Gaussianity with multitracer intensity mapping, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.063520
[12] Cunnington, Steven; Camera, Stefano; Pourtsidou, Alkistis, The degeneracy between primordial non-Gaussianity and foregrounds in 21 cm intensity mapping experiments, Mon. Not. Roy. Astron. Soc., 499, 4054-4067 (2020) · doi:10.1093/mnras/staa2986
[13] Fry, James N.; Scherrer, Robert J., Skewness and nonGaussian initial conditions, Astrophys. J., 429, 36-42 (1994) · doi:10.1086/174300
[14] Scoccimarro, Roman, The bispectrum: from theory to observations, Astrophys. J., 544, 597 (2000) · doi:10.1086/317248
[15] Verde, Licia; Jimenez, Raul; Kamionkowski, Marc; Matarrese, Sabino, Tests for primordial nonGaussianity, Mon. Not. Roy. Astron. Soc., 325, 412 (2001) · doi:10.1046/j.1365-8711.2001.04459.x
[16] Scoccimarro, Roman; Sefusatti, Emiliano; Zaldarriaga, Matias, Probing primordial non-Gaussianity with large-scale structure, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.103513
[17] Sefusatti, Emiliano; Komatsu, Eiichiro, The Bispectrum of Galaxies from High-Redshift Galaxy Surveys: Primordial Non-Gaussianity and Non-Linear Galaxy Bias, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.083004
[18] Takada, Masahiro; Jain, Bhuvnesh, Cosmological parameters from lensing power spectrum and bispectrum tomography, Mon. Not. Roy. Astron. Soc., 348, 897 (2004) · doi:10.1111/j.1365-2966.2004.07410.x
[19] Schaefer, Bjoern Malte; Grassi, Alessandra; Gerstenlauer, Mischa; Byrnes, Christian T., A weak lensing view on primordial non-Gaussianities, Mon. Not. Roy. Astron. Soc., 421, 797-807 (2012) · doi:10.1111/j.1365-2966.2011.20357.x
[20] Hilbert, Stefan; Marian, Laura; Smith, Robert E.; Desjacques, Vincent, Measuring primordial non-Gaussianity with weak-lensing surveys, Mon. Not. Roy. Astron. Soc., 426, 2870 (2012) · doi:10.1111/j.1365-2966.2012.21841.x
[21] Grinstein, Benjamin; Wise, Mark B., Nongaussian Fluctuations and the Correlations of Galaxies or Rich Clusters of Galaxies, Astrophys. J., 310, 19-22 (1986) · doi:10.1086/164660
[22] Dalal, Neal; Dore, Olivier; Huterer, Dragan; Shirokov, Alexander, The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.123514
[23] Matarrese, Sabino; Verde, Licia, The effect of primordial non-Gaussianity on halo bias, Astrophys. J. Lett., 677, L77-L80 (2008) · doi:10.1086/587840
[24] Afshordi, Niayesh; Tolley, Andrew J., Primordial non-gaussianity, statistics of collapsed objects, and the Integrated Sachs-Wolfe effect, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123507
[25] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Non-Gaussian Halo Bias Re-examined: Mass-dependent Amplitude from the Peak-Background Split and Thresholding, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.063512
[26] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Accurate Predictions for the Scale-Dependent Galaxy Bias from Primordial Non-Gaussianity, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.061301
[27] Slosar, Anze; Hirata, Christopher; Seljak, Uros; Ho, Shirley; Padmanabhan, Nikhil, Constraints on local primordial non-Gaussianity from large scale structure, JCAP, 08 (2008) · doi:10.1088/1475-7516/2008/08/031
[28] Giannantonio, Tommaso; Ross, Ashley J.; Percival, Will J.; Crittenden, Robert; Bacher, David; Kilbinger, Martin, Improved Primordial Non-Gaussianity Constraints from Measurements of Galaxy Clustering and the Integrated Sachs-Wolfe Effect, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.023511
[29] Karagiannis, Dionysios; Shanks, Tom; Ross, Nicholas P., Search for primordial non-Gaussianity in the quasars of SDSS-III BOSS DR9, Mon. Not. Roy. Astron. Soc., 441, 486-502 (2014) · doi:10.1093/mnras/stu590
[30] Leistedt, Boris; Peiris, Hiranya V.; Roth, Nina, Constraints on Primordial Non-Gaussianity from 800 000 Photometric Quasars, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.221301
[31] Castorina, Emanuele, Redshift-weighted constraints on primordial non-Gaussianity from the clustering of the eBOSS DR14 quasars in Fourier space, JCAP, 09 (2019) · doi:10.1088/1475-7516/2019/09/010
[32] Desjacques, V.; Seljak, U., Primordial non-Gaussianity from the large scale structure, Class. Quant. Grav., 27 (2010) · Zbl 1190.83111 · doi:10.1088/0264-9381/27/12/124011
[33] Alvarez, Marcelo, Testing Inflation with Large Scale Structure: Connecting Hopes with Reality (2014)
[34] Biagetti, Matteo, The Hunt for Primordial Interactions in the Large Scale Structures of the Universe, Galaxies, 7, 71 (2019) · doi:10.3390/galaxies7030071
[35] Sefusatti, Emiliano; Crocce, Martin; Desjacques, Vincent, The Halo Bispectrum in N-body Simulations with non-Gaussian Initial Conditions, Mon. Not. Roy. Astron. Soc., 425, 2903 (2012) · doi:10.1111/j.1365-2966.2012.21271.x
[36] Pullen, Anthony R.; Hirata, Christopher M., Systematic effects in large-scale angular power spectra of photometric quasars and implications for constraining primordial nongaussianity, Publ. Astron. Soc. Pac., 125, 705-718 (2013) · doi:10.1086/671189
[37] Ross, Ashley J., The Clustering of Galaxies in SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: Constraints on Primordial Non-Gaussianity, Mon. Not. Roy. Astron. Soc., 428, 1116-1127 (2013) · doi:10.1093/mnras/sts094
[38] Leistedt, Boris; Peiris, Hiranya V.; Mortlock, Daniel J.; Benoit-Lévy, Aurélien; Pontzen, Andrew, Estimating the large-scale angular power spectrum in the presence of systematics: a case study of Sloan Digital Sky Survey quasars, Mon. Not. Roy. Astron. Soc., 435, 1857 (2013) · doi:10.1093/mnras/stt1359
[39] Meerburg, P. Daniel; Münchmeyer, Moritz; Muñoz, Julian B.; Chen, Xingang, Prospects for Cosmological Collider Physics, JCAP, 03 (2017) · doi:10.1088/1475-7516/2017/03/050
[40] Moradinezhad Dizgah, Azadeh; Dvorkin, Cora, Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation, JCAP, 01 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/01/010
[41] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora, Galaxy Bispectrum from Massive Spinning Particles, JCAP, 05 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/05/013
[42] Moradinezhad Dizgah, Azadeh; Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio, Constraints on long-lived, higher-spin particles from galaxy bispectrum, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.063520
[43] Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia, Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys, Mon. Not. Roy. Astron. Soc., 478, 1341-1376 (2018) · doi:10.1093/mnras/sty1029
[44] Gil-Marín, Héctor; Verde, Licia; Noreña, Jorge; Cuesta, Antonio J.; Samushia, Lado; Percival, Will J., The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — II. Cosmological interpretation, Mon. Not. Roy. Astron. Soc., 452, 1914-1921 (2015) · doi:10.1093/mnras/stv1359
[45] Gil-Marín, Héctor; Noreña, Jorge; Verde, Licia; Percival, Will J.; Wagner, Christian; Manera, Marc, The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — I. Bias and gravity, Mon. Not. Roy. Astron. Soc., 451, 539-580 (2015) · doi:10.1093/mnras/stv961
[46] Gil-Marín, Héctor; Percival, Will J.; Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies, Mon. Not. Roy. Astron. Soc., 465, 1757-1788 (2017) · doi:10.1093/mnras/stw2679
[47] Pearson, David W.; Samushia, Lado, A Detection of the Baryon Acoustic Oscillation features in the SDSS BOSS DR12 Galaxy Bispectrum, Mon. Not. Roy. Astron. Soc., 478, 4500-4512 (2018) · doi:10.1093/mnras/sty1266
[48] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[49] Crocce, Martin; Scoccimarro, Roman, Nonlinear Evolution of Baryon Acoustic Oscillations, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.023533
[50] McDonald, Patrick; Roy, Arabindo, Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS, JCAP, 08 (2009) · doi:10.1088/1475-7516/2009/08/020
[51] Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo, The Effective Field Theory of Cosmological Large Scale Structures, JHEP, 09, 082 (2012) · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[52] Senatore, Leonardo, Bias in the Effective Field Theory of Large Scale Structures, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/007
[53] Senatore, Leonardo; Zaldarriaga, Matias, The IR-resummed Effective Field Theory of Large Scale Structures, JCAP, 02 (2015) · doi:10.1088/1475-7516/2015/02/013
[54] Senatore, Leonardo; Zaldarriaga, Matias, Redshift Space Distortions in the Effective Field Theory of Large Scale Structures (2014) · Zbl 1294.83099
[55] Assassi, Valentin; Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias, Renormalized Halo Bias, JCAP, 08 (2014) · doi:10.1088/1475-7516/2014/08/056
[56] Vlah, Zvonimir; Seljak, Uroš; Baldauf, Tobias, Lagrangian perturbation theory at one loop order: successes, failures, and improvements, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.023508
[57] Assassi, Valentin; Baumann, Daniel; Pajer, Enrico; Welling, Yvette; van der Woude, Drian, Effective theory of large-scale structure with primordial non-Gaussianity, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/024
[58] Matsubara, Takahiko, Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.063530
[59] Matsubara, Takahiko, Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.109901
[60] Carlson, Jordan; Reid, Beth; White, Martin, Convolution Lagrangian perturbation theory for biased tracers, Mon. Not. Roy. Astron. Soc., 429, 1674 (2013) · doi:10.1093/mnras/sts457
[61] Porto, Rafael A.; Senatore, Leonardo; Zaldarriaga, Matias, The Lagrangian-space Effective Field Theory of Large Scale Structures, JCAP, 05 (2014) · Zbl 1306.81425 · doi:10.1088/1475-7516/2014/05/022
[62] Baldauf, Tobias; Mercolli, Lorenzo; Mirbabayi, Mehrdad; Pajer, Enrico, The Bispectrum in the Effective Field Theory of Large Scale Structure, JCAP, 05 (2015) · doi:10.1088/1475-7516/2015/05/007
[63] Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo, The One-Loop Matter Bispectrum in the Effective Field Theory of Large Scale Structures, JCAP, 10 (2015) · doi:10.1088/1475-7516/2015/10/039
[64] Vlah, Zvonimir; White, Martin; Aviles, Alejandro, A Lagrangian effective field theory, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/09/014
[65] Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo; Vlah, Zvonimir, On the Statistics of Biased Tracers in the Effective Field Theory of Large Scale Structures, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/9/029
[66] Perko, Ashley; Senatore, Leonardo; Jennings, Elise; Wechsler, Risa H., Biased Tracers in Redshift Space in the EFT of Large-Scale Structure (2016)
[67] Schmittfull, Marcel; Simonović, Marko; Assassi, Valentin; Zaldarriaga, Matias, Modeling Biased Tracers at the Field Level, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.043514
[68] Eggemeier, Alexander; Scoccimarro, Roman; Smith, Robert E., Bias Loop Corrections to the Galaxy Bispectrum, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.123514
[69] Eggemeier, Alexander; Scoccimarro, Román; Crocce, Martin; Pezzotta, Andrea; Sánchez, Ariel G., Testing one-loop galaxy bias: Power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103530
[70] Nishimichi, Takahiro; D’Amico, Guido; Ivanov, Mikhail M.; Senatore, Leonardo; Simonović, Marko; Takada, Masahiro, Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.123541
[71] Steele, Theodore; Baldauf, Tobias, Precise Calibration of the One-Loop Bispectrum in the Effective Field Theory of Large Scale Structure, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.023520
[72] Ivanov, Mikhail M.; Simonović, Marko; Zaldarriaga, Matias, Cosmological Parameters from the BOSS Galaxy Power Spectrum, JCAP, 05 (2020) · doi:10.1088/1475-7516/2020/05/042
[73] Ivanov, Mikhail M.; Simonović, Marko; Zaldarriaga, Matias, Cosmological Parameters and Neutrino Masses from the Final Planck and Full-Shape BOSS Data, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.083504
[74] Colas, Thomas; D’amico, Guido; Senatore, Leonardo; Zhang, Pierre; Beutler, Florian, Efficient Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP, 06 (2020) · doi:10.1088/1475-7516/2020/06/001
[75] D’Amico, Guido; Gleyzes, Jérôme; Kokron, Nickolas; Markovic, Katarina; Senatore, Leonardo; Zhang, Pierre, The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP, 05 (2020) · doi:10.1088/1475-7516/2020/05/005
[76] Tröster, Tilman, Cosmology from large-scale structure: Constraining ΛCDM with BOSS, Astron. Astrophys., 633, L10 (2020) · doi:10.1051/0004-6361/201936772
[77] Ivanov, Mikhail M.; McDonough, Evan; Hill, J. Colin; Simonović, Marko; Toomey, Michael W.; Alexander, Stephon, Constraining Early Dark Energy with Large-Scale Structure, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103502
[78] Scoccimarro, Roman; Couchman, H. M. P.; Frieman, Joshua A., The Bispectrum as a Signature of Gravitational Instability in Redshift-Space, Astrophys. J., 517, 531-540 (1999) · doi:10.1086/307220
[79] Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki, Analytic halo approach to the bispectrum of galaxies in redshift space, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.043528
[80] Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo, On the Bispectra of Very Massive Tracers in the Effective Field Theory of Large-Scale Structure, JCAP, 02 (2018) · doi:10.1088/1475-7516/2018/02/058
[81] Hashimoto, Ichihiko; Rasera, Yann; Taruya, Atsushi, Precision cosmology with redshift-space bispectrum: a perturbation theory based model at one-loop order, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.043526
[82] Lazanu, Andrei; Liguori, Michele, The two and three-loop matter bispectrum in perturbation theories, JCAP, 04 (2018) · Zbl 1536.83186 · doi:10.1088/1475-7516/2018/04/055
[83] de Belsunce, Roger; Senatore, Leonardo, Tree-Level Bispectrum in the Effective Field Theory of Large-Scale Structure extended to Massive Neutrinos, JCAP, 02 (2019) · Zbl 1541.83137 · doi:10.1088/1475-7516/2019/02/038
[84] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, The Galaxy Power Spectrum and Bispectrum in Redshift Space, JCAP, 12 (2018) · Zbl 1392.83093 · doi:10.1088/1475-7516/2018/12/035
[85] Ivanov, Mikhail M.; Sibiryakov, Sergey, Infrared Resummation for Biased Tracers in Redshift Space, JCAP, 07 (2018) · doi:10.1088/1475-7516/2018/07/053
[86] Oddo, Andrea; Sefusatti, Emiliano; Porciani, Cristiano; Monaco, Pierluigi; Sánchez, Ariel G., Toward a robust inference method for the galaxy bispectrum: likelihood function and model selection, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/056
[87] Hahn, ChangHoon; Villaescusa-Navarro, Francisco; Castorina, Emanuele; Scoccimarro, Roman, Constraining M_ν with the bispectrum. Part I. Breaking parameter degeneracies, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/040
[88] Agarwal, Nishant; Ho, Shirley; Shandera, Sarah, Constraining the initial conditions of the Universe using large scale structure, JCAP, 02 (2014) · doi:10.1088/1475-7516/2014/02/038
[89] Ho, Shirley, Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe, JCAP, 05 (2015) · doi:10.1088/1475-7516/2015/05/040
[90] Sabti, Nashwan; Muñoz, Julian B.; Blas, Diego, First Constraints on Small-Scale Non-Gaussianity from UV Galaxy Luminosity Functions, JCAP, 01 (2021) · doi:10.1088/1475-7516/2021/01/010
[91] Pillepich, Annalisa; Porciani, Cristiano; Hahn, Oliver, Universal halo mass function and scale-dependent bias from N-body simulations with non-Gaussian initial conditions, Mon. Not. Roy. Astron. Soc., 402, 191-206 (2010) · doi:10.1111/j.1365-2966.2009.15914.x
[92] Desjacques, Vincent; Seljak, Uros; Iliev, Ilian, Scale-dependent bias induced by local non-Gaussianity: A comparison to N-body simulations, Mon. Not. Roy. Astron. Soc., 396, 85-96 (2009) · doi:10.1111/j.1365-2966.2009.14721.x
[93] Wagner, Christian; Verde, Licia; Boubekeur, Lotfi, N-body simulations with generic non-Gaussian initial conditions I: Power Spectrum and halo mass function, JCAP, 10 (2010) · doi:10.1088/1475-7516/2010/10/022
[94] Scoccimarro, Roman; Hui, Lam; Manera, Marc; Chan, Kwan Chuen, Large-scale Bias and Efficient Generation of Initial Conditions for Non-Local Primordial Non-Gaussianity, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.083002
[95] Wagner, Christian; Verde, Licia, N-body simulations with generic non-Gaussian initial conditions II: Halo bias, JCAP, 03 (2012) · doi:10.1088/1475-7516/2012/03/002
[96] Biagetti, Matteo; Lazeyras, Titouan; Baldauf, Tobias; Desjacques, Vincent; Schmidt, Fabian, Verifying the consistency relation for the scale-dependent bias from local primordial non-Gaussianity, Mon. Not. Roy. Astron. Soc., 468, 3277-3288 (2017) · doi:10.1093/mnras/stx714
[97] Mueller, Eva-Maria; Percival, Will J.; Ruggeri, Rossana, Optimizing primordial non-Gaussianity measurements from galaxy surveys, Mon. Not. Roy. Astron. Soc., 485, 4160-4166 (2019) · doi:10.1093/mnras/sty3150
[98] Nishimichi, Takahiro; Taruya, Atsushi; Koyama, Kazuya; Sabiu, Cristiano, Scale Dependence of Halo Bispectrum from Non-Gaussian Initial Conditions in Cosmological N-body Simulations, JCAP, 07 (2010) · doi:10.1088/1475-7516/2010/07/002
[99] Smith, Robert E.; Desjacques, Vincent; Marian, Laura, Nonlinear clustering in models with primordial non-Gaussianity: the halo model approach, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.043526
[100] Moradinezhad Dizgah, Azadeh; Chan, Kwan Chuen; Noreña, Jorge; Biagetti, Matteo; Desjacques, Vincent, Squeezing the halo bispectrum: a test of bias models, JCAP, 09 (2016) · doi:10.1088/1475-7516/2016/09/030
[101] Shirasaki, Masato; Sugiyama, Naonori S.; Takahashi, Ryuichi; Kitaura, Francisco-Shu, Constraining primordial non-Gaussianity with postreconstructed galaxy bispectrum in redshift space, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.023506
[102] Yamauchi, Daisuke; Yokoyama, Shuichiro; Takahashi, Keitaro, Multitracer technique for galaxy bispectrum: An application to constraints on nonlocal primordial non-Gaussianities, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.063530
[103] Tellarini, Matteo; Ross, Ashley J.; Tasinato, Gianmassimo; Wands, David, Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions, JCAP, 06 (2016) · doi:10.1088/1475-7516/2016/06/014
[104] Karagiannis, Dionysios; Fonseca, José; Maartens, Roy; Camera, Stefano, Probing primordial non-Gaussianity with the bispectrum of future 21cm intensity maps (2020)
[105] Barreira, Alexandre, On the impact of galaxy bias uncertainties on primordial non-Gaussianity constraints, JCAP, 12 (2020) · Zbl 1484.83102 · doi:10.1088/1475-7516/2020/12/031
[106] Esposito, Angelo; Hui, Lam; Scoccimarro, Roman, Nonperturbative test of consistency relations and their violation, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.043536
[107] de Putter, Roland, Primordial physics from large-scale structure beyond the power spectrum (2018)
[108] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Schmittfull, Marcel; Dvorkin, Cora, Capturing non-Gaussianity of the large-scale structure with weighted skew-spectra, JCAP, 04 (2020) · Zbl 1491.83060 · doi:10.1088/1475-7516/2020/04/011
[109] Dai, Ji-Ping; Verde, Licia; Xia, Jun-Qing, What Can We Learn by Combining the Skew Spectrum and the Power Spectrum?, JCAP, 08 (2020) · Zbl 1492.85011 · doi:10.1088/1475-7516/2020/08/007
[110] Biagetti, Matteo; Cole, Alex; Shiu, Gary, The Persistence of Large Scale Structures I: Primordial non-Gaussianity (2020)
[111] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[112] Kaiser, Nick, On the Spatial correlations of Abell clusters, Astrophys. J. Lett., 284, L9-L12 (1984) · doi:10.1086/184341
[113] A.S. Szalay, Constraints on the Biasing of Density Fluctuations, Astrophys. J.333 (1988) 21. · doi:10.1086/166721
[114] Fry, James N.; Gaztanaga, Enrique, Biasing and hierarchical statistics in large scale structure, Astrophys. J., 413, 447-452 (1993) · doi:10.1086/173015
[115] Catelan, Paolo; Lucchin, Francesco; Matarrese, Sabino; Porciani, Cristiano, The bias field of dark matter halos, Mon. Not. Roy. Astron. Soc., 297, 692-712 (1998) · doi:10.1046/j.1365-8711.1998.01455.x
[116] Dekel, Avishai; Lahav, Ofer, Stochastic nonlinear galaxy biasing, Astrophys. J., 520, 24-34 (1999) · doi:10.1086/307428
[117] Matsubara, Takahiko, Stochasticity of bias and nonlocality of galaxy formation: Linear scales, Astrophys. J., 525, 543-553 (1999) · doi:10.1086/307931
[118] Desjacques, Vincent; Crocce, Martin; Scoccimarro, Roman; Sheth, Ravi K., Modeling scale-dependent bias on the baryonic acoustic scale with the statistics of peaks of Gaussian random fields, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.103529
[119] Chan, Kwan Chuen; Scoccimarro, Roman; Sheth, Ravi K., Gravity and Large-Scale Non-local Bias, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.083509
[120] Baldauf, Tobias; Seljak, Uros; Desjacques, Vincent; McDonald, Patrick, Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083540
[121] McDonald, Patrick, Primordial non-Gaussianity: large-scale structure signature in the perturbative bias model, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123519
[122] Giannantonio, Tommaso; Porciani, Cristiano, Structure formation from non-Gaussian initial conditions: multivariate biasing, statistics, and comparison with N-body simulations, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.063530
[123] Baldauf, Tobias; Seljak, Uros; Senatore, Leonardo, Primordial non-Gaussianity in the Bispectrum of the Halo Density Field, JCAP, 04 (2011) · doi:10.1088/1475-7516/2011/04/006
[124] Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian, Galaxy Bias and Primordial Non-Gaussianity, JCAP, 12 (2015) · doi:10.1088/1475-7516/2015/12/043
[125] Press, William H.; Schechter, Paul, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J., 187, 425-438 (1974) · doi:10.1086/152650
[126] Sheth, Ravi K.; Tormen, Giuseppe, Large scale bias and the peak background split, Mon. Not. Roy. Astron. Soc., 308, 119 (1999) · doi:10.1046/j.1365-8711.1999.02692.x
[127] Matarrese, Sabino; Verde, Licia; Jimenez, Raul, The Abundance of high-redshift objects as a probe of non-Gaussian initial conditions, Astrophys. J., 541, 10 (2000) · doi:10.1086/309412
[128] LoVerde, Marilena; Miller, Amber; Shandera, Sarah; Verde, Licia, Effects of Scale-Dependent Non-Gaussianity on Cosmological Structures, JCAP, 04 (2008) · doi:10.1088/1475-7516/2008/04/014
[129] Maggiore, Michele; Riotto, Antonio, The Halo mass function from excursion set theory. III. Non-Gaussian fluctuations, Astrophys. J., 717, 526-541 (2010) · doi:10.1088/0004-637X/717/1/526
[130] T.Y. Lam and R.K. Sheth, Halo abundances in the f_NL model, Mon. Not. Roy. Astron. Soc.398 (2009) 2143. · doi:10.1111/j.1365-2966.2009.15264.x
[131] Lucchin, Francesco; Matarrese, Sabino, The Effect of nonGaussian statistics on the mass multiplicity of cosmic structures, Astrophys. J., 330, 535-544 (1988) · doi:10.1086/166492
[132] Colafrancesco, S.; Lucchin, F.; Matarrese, S., The Mass function from local density maxima. Groups and clusters of galaxies, Astrophys. J., 345, 3-11 (1989) · doi:10.1086/167875
[133] Matsubara, Takahiko, Deriving an Accurate Formula of Scale-dependent Bias with Primordial Non-Gaussianity: An Application of the Integrated Perturbation Theory, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.063518
[134] Desjacques, Vincent; Gong, Jinn-Ouk; Riotto, Antonio, Non-Gaussian bias: insights from discrete density peaks, JCAP, 09 (2013) · doi:10.1088/1475-7516/2013/09/006
[135] Lazeyras, Titouan; Musso, Marcello; Desjacques, Vincent, Lagrangian bias of generic large-scale structure tracers, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.063007
[136] Lucchin, Francesco; Matarrese, Sabino, The Effect of nonGaussian statistics on the mass multiplicity of cosmic structures, Astrophys. J., 330, 535-544 (1988) · doi:10.1086/166492
[137] LoVerde, Marilena; Miller, Amber; Shandera, Sarah; Verde, Licia, Effects of Scale-Dependent Non-Gaussianity on Cosmological Structures, JCAP, 04 (2008) · doi:10.1088/1475-7516/2008/04/014
[138] Grossi, M.; Dolag, K.; Branchini, E.; Matarrese, S.; Moscardini, L., Evolution of Massive Haloes in non-Gaussian Scenarios, Mon. Not. Roy. Astron. Soc., 382, 1261 (2007) · doi:10.1111/j.1365-2966.2007.12458.x
[139] Taruya, Atsushi; Koyama, Kazuya; Matsubara, Takahiko, Signature of Primordial Non-Gaussianity on Matter Power Spectrum, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123534
[140] Matarrese, Sabino; Verde, Licia; Jimenez, Raul, The Abundance of high-redshift objects as a probe of non-Gaussian initial conditions, Astrophys. J., 541, 10 (2000) · doi:10.1086/309412
[141] Hamaus, Nico; Seljak, Uros; Desjacques, Vincent, Optimal Constraints on Local Primordial Non-Gaussianity from the Two-Point Statistics of Large-Scale Structure, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.083509
[142] Hamaus, Nico; Seljak, Uros; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias, Minimizing the Stochasticity of Halos in Large-Scale Structure Surveys, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.043515
[143] Ginzburg, Dimitry; Desjacques, Vincent; Chan, Kwan Chuen, Shot noise and biased tracers: a new look at the halo model, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.083528
[144] Wadekar, Digvijay; Scoccimarro, Roman, Galaxy power spectrum multipoles covariance in perturbation theory, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.123517
[145] Yankelevich, Victoria; Porciani, Cristiano, Cosmological information in the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 483, 2078-2099 (2019) · doi:10.1093/mnras/sty3143
[146] A. Oddo, Joint Analysis of Halo Power Spectrum and Bispectrum, in preparation.
[147] Zuntz, Joe; Paterno, Marc; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott, CosmoSIS: modular cosmological parameter estimation, Astron. Comput., 12, 45-59 (2015) · doi:10.1016/j.ascom.2015.05.005
[148] Springel, Volker, The Cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc., 364, 1105-1134 (2005) · doi:10.1111/j.1365-2966.2005.09655.x
[149] Lesgourgues, Julien, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview (2011)
[150] Blas, Diego; Lesgourgues, Julien; Tram, Thomas, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP, 07 (2011) · doi:10.1088/1475-7516/2011/07/034
[151] Crocce, M.; Pueblas, S.; Scoccimarro, R., Transients from Initial Conditions in Cosmological Simulations, Mon. Not. Roy. Astron. Soc., 373, 369-381 (2006) · doi:10.1111/j.1365-2966.2006.11040.x
[152] Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi, The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores, Astrophys. J., 762, 109 (2013) · doi:10.1088/0004-637X/762/2/109
[153] Sefusatti, Emiliano; Crocce, Martin; Scoccimarro, Roman; Couchman, Hugh, Accurate Estimators of Correlation Functions in Fourier Space, Mon. Not. Roy. Astron. Soc., 460, 3624-3636 (2016) · doi:10.1093/mnras/stw1229
[154] Scoccimarro, Roman; Colombi, Stephane; Fry, James N.; Frieman, Joshua A.; Hivon, Eric; Melott, Adrian, Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J., 496, 586 (1998) · doi:10.1086/305399
[155] Saito, Shun; Baldauf, Tobias; Vlah, Zvonimir; Seljak, Uroš; Okumura, Teppei; McDonald, Patrick, Understanding higher-order nonlocal halo bias at large scales by combining the power spectrum with the bispectrum, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.123522
[156] Modi, Chirag; Castorina, Emanuele; Seljak, Uros, Halo bias in Lagrangian Space: Estimators and theoretical predictions, Mon. Not. Roy. Astron. Soc., 472, 3959-3970 (2017) · doi:10.1093/mnras/stx2148
[157] Lazeyras, Titouan; Schmidt, Fabian, Beyond LIMD bias: a measurement of the complete set of third-order halo bias parameters, JCAP, 09 (2018) · doi:10.1088/1475-7516/2018/09/008
[158] Lazeyras, Titouan; Wagner, Christian; Baldauf, Tobias; Schmidt, Fabian, Precision measurement of the local bias of dark matter halos, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/018
[159] Valageas, P., Mass function and bias of dark matter halos for non-Gaussian initial conditions, Astron. Astrophys., 514, A46 (2010) · Zbl 1213.85063 · doi:10.1051/0004-6361/200912636
[160] Barreira, Alexandre; Cabass, Giovanni; Schmidt, Fabian; Pillepich, Annalisa; Nelson, Dylan, Galaxy bias and primordial non-Gaussianity: insights from galaxy formation simulations with IllustrisTNG, JCAP, 12 (2020) · Zbl 1484.85004 · doi:10.1088/1475-7516/2020/12/013
[161] Audren, Benjamin; Lesgourgues, Julien; Bird, Simeon; Haehnelt, Martin G.; Viel, Matteo, Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors, JCAP, 01 (2013) · doi:10.1088/1475-7516/2013/01/026
[162] Baldauf, Tobias; Mirbabayi, Mehrdad; Simonović, Marko; Zaldarriaga, Matias, LSS constraints with controlled theoretical uncertainties (2016)
[163] Byun, Joyce; Eggemeier, Alexander; Regan, Donough; Seery, David; Smith, Robert E., Towards optimal cosmological parameter recovery from compressed bispectrum statistics, Mon. Not. Roy. Astron. Soc., 471, 1581-1618 (2017) · doi:10.1093/mnras/stx1681
[164] Agarwal, Nishant; Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Information content in the redshift-space galaxy power spectrum and bispectrum, JCAP, 03 (2021) · Zbl 1536.83163 · doi:10.1088/1475-7516/2021/03/021
[165] Grossi, M.; Verde, L.; Carbone, C.; Dolag, K.; Branchini, E.; Iannuzzi, F., Large-scale non-Gaussian mass function and halo bias: tests on N-body simulations, Mon. Not. Roy. Astron. Soc., 398, 321-332 (2009) · doi:10.1111/j.1365-2966.2009.15150.x
[166] Ginzburg, Dimitry; Desjacques, Vincent, Shot noise in multitracer constraints on fNL and relativistic projections: Power spectrum, Mon. Not. Roy. Astron. Soc., 495, 932-942 (2020) · doi:10.1093/mnras/staa1154
[167] Feroz, F.; Hobson, M. P.; Bridges, M., MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc., 398, 1601-1614 (2009) · doi:10.1111/j.1365-2966.2009.14548.x
[168] Trotta, Roberto, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys., 49, 71-104 (2008) · doi:10.1080/00107510802066753
[169] Creminelli, Paolo; Zaldarriaga, Matias, Single field consistency relation for the 3-point function, JCAP, 10 (2004) · doi:10.1088/1475-7516/2004/10/006
[170] Maldacena, Juan Martin, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP, 05, 013 (2003) · doi:10.1088/1126-6708/2003/05/013
[171] Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro, Non-Gaussian halo assembly bias, JCAP, 07 (2010) · doi:10.1088/1475-7516/2010/07/013
[172] Raccanelli, Alvise; Dore, Olivier; Dalal, Neal, Optimization of spectroscopic surveys for testing non-Gaussianity, JCAP, 08 (2015) · doi:10.1088/1475-7516/2015/08/034
[173] de Putter, Roland; Doré, Olivier, Designing an Inflation Galaxy Survey: how to measure σ(f_NL) ∼ 1 using scale-dependent galaxy bias, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.123513
[174] Kehagias, A.; Moradinezhad Dizgah, A.; Noreña, J.; Perrier, H.; Riotto, A., A Consistency Relation for the Observed Galaxy Bispectrum and the Local non-Gaussianity from Relativistic Corrections, JCAP, 08 (2015) · doi:10.1088/1475-7516/2015/08/018
[175] Di Dio, E.; Perrier, H.; Durrer, R.; Marozzi, G.; Moradinezhad Dizgah, A.; Noreña, J., Non-Gaussianities due to Relativistic Corrections to the Observed Galaxy Bispectrum, JCAP, 03 (2017) · Zbl 1515.83332 · doi:10.1088/1475-7516/2017/03/006
[176] Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy; Clarkson, Chris, A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone, JCAP, 03 (2017) · Zbl 1515.83109 · doi:10.1088/1475-7516/2017/03/034
[177] Castiblanco, Lina; Gannouji, Radouane; Noreña, Jorge; Stahl, Clément, Relativistic cosmological large scale structures at one-loop, JCAP, 07 (2019) · Zbl 1515.83318 · doi:10.1088/1475-7516/2019/07/030
[178] Carbone, Carmelita; Mena, Olga; Verde, Licia, Cosmological Parameters Degeneracies and Non-Gaussian Halo Bias, JCAP, 07 (2010) · doi:10.1088/1475-7516/2010/07/020
[179] Crocce, Martin; Scoccimarro, Roman, Memory of initial conditions in gravitational clustering, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.063520
[180] Eisenstein, Daniel J.; Seo, Hee-Jong; White, Martin J., On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter, Astrophys. J., 664, 660-674 (2007) · doi:10.1086/518755
[181] Eisenstein, Daniel J.; Seo, Hee-jong; Sirko, Edwin; Spergel, David, Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak, Astrophys. J., 664, 675-679 (2007) · doi:10.1086/518712
[182] Matarrese, Sabino; Pietroni, Massimo, Baryonic Acoustic Oscillations via the Renormalization Group, Mod. Phys. Lett. A, 23, 25-32 (2008) · doi:10.1142/S0217732308026182
[183] Baldauf, Tobias; Mirbabayi, Mehrdad; Simonović, Marko; Zaldarriaga, Matias, Equivalence Principle and the Baryon Acoustic Peak, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.043514
[184] Vlah, Zvonimir; Seljak, Uroš; Chu, Man Yat; Feng, Yu, Perturbation theory, effective field theory, and oscillations in the power spectrum, JCAP, 03 (2016) · doi:10.1088/1475-7516/2016/03/057
[185] Senatore, Leonardo; Trevisan, Gabriele, On the IR-Resummation in the EFTofLSS, JCAP, 05 (2018) · Zbl 1541.85017 · doi:10.1088/1475-7516/2018/05/019
[186] Lewandowski, Matthew; Senatore, Leonardo, An analytic implementation of the IR-resummation for the BAO peak, JCAP, 03 (2020) · Zbl 1490.83032 · doi:10.1088/1475-7516/2020/03/018
[187] Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey, Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation, JCAP, 07 (2016) · doi:10.1088/1475-7516/2016/07/028
[188] Baumann, Daniel; Nicolis, Alberto; Senatore, Leonardo; Zaldarriaga, Matias, Cosmological Non-Linearities as an Effective Fluid, JCAP, 07 (2012) · doi:10.1088/1475-7516/2012/07/051
[189] Hamann, Jan; Hannestad, Steen; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y. Y., Cosmological parameters from large scale structure — geometric versus shape information, JCAP, 07 (2010) · doi:10.1088/1475-7516/2010/07/022
[190] Baumann, Daniel; Green, Daniel; Wallisch, Benjamin, Searching for light relics with large-scale structure, JCAP, 08 (2018) · doi:10.1088/1475-7516/2018/08/029
[191] Eisenstein, Daniel J.; Hu, Wayne, Baryonic features in the matter transfer function, Astrophys. J., 496, 605 (1998) · doi:10.1086/305424
[192] Eisenstein, Daniel J.; Hu, Wayne, Power spectra for cold dark matter and its variants, Astrophys. J., 511, 5 (1997) · doi:10.1086/306640
[193] Kiakotou, Angeliki; Elgaroy, Oystein; Lahav, Ofer, Neutrino Mass, Dark Energy, and the Linear Growth Factor, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.063005
[194] Reid, Beth A., Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, Mon. Not. Roy. Astron. Soc., 404, 60-85 (2010) · doi:10.1111/j.1365-2966.2010.16276.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.