×

Skewing the CMB \(\times\) LSS: a fast method for bispectrum analysis. (English) Zbl 1507.83088

Summary: Upcoming cosmic microwave background (CMB) lensing measurements and tomographic galaxy surveys are expected to provide us with high-precision data sets in the coming years, thus paving the way for fruitful cross-correlation analyses. In this paper we study the information content of the weighted skew-spectrum, a nearly-optimal estimator of the angular bispectrum amplitude, as a means to extract non-Gaussian information on both bias and cosmological parameters from the bispectra of galaxies cross-correlated with CMB lensing, while gaining significantly on speed. Our results show that for the combination of the Planck satellite and the Dark Energy Spectroscopic Instrument (DESI), the difference in the constraints on bias and cosmological parameters from the skew-spectrum and the bispectrum is at most 17%. We further compare and find agreement between our theoretical skew-spectra and those estimated from N-body simulations, for which it is important to include gravitational non-linearities beyond perturbation theory and the post-Born effect for CMB lensing. We define an algorithm to apply the skew-spectrum estimator to the data and, as a preliminary step, we use the skew-spectra to constrain bias parameters and the amplitude of shot noise from the simulations through a Markov chain Monte Carlo likelihood analysis, finding that it may be possible to reach percent-level estimates for the linear bias parameter \(b_1\).

MSC:

83F05 Relativistic cosmology
62F10 Point estimation
81V80 Quantum optics
78A45 Diffraction, scattering
86A15 Seismology (including tsunami modeling), earthquakes
62H20 Measures of association (correlation, canonical correlation, etc.)
47A10 Spectrum, resolvent
83C56 Dark matter and dark energy
35B20 Perturbations in context of PDEs

References:

[1] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: science,Targeting, and Survey Design (2016)
[2] LSST Science, LSST Project Collaboration; Abell, Paul A., LSST Science Book, Version 2.0 (2009)
[3] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[4] CMB-S4 Collaboration; Abazajian, Kevork N., CMB-S4 Science Book, First Edition (2016)
[5] Simons Observatory Collaboration; Ade, Peter, The Simons Observatory: Science goals and forecasts, JCAP, 02 (2019) · doi:10.1088/1475-7516/2019/02/056
[6] Yu, Byeonghee; Ferraro, Simone; Knight, Z. Robert; Knox, Lloyd; Sherwin, Blake D., The physical origin of dark energy constraints from rubin observatory and CMB-S4 lensing tomography, Mon. Not. Roy. Astron. Soc., 513, 1887-1894 (2022) · doi:10.1093/mnras/stac1054
[7] Pullen, Anthony R.; Alam, Shadab; He, Siyu; Ho, Shirley, Constraining Gravity at the Largest Scales through CMB Lensing and Galaxy Velocities, Mon. Not. Roy. Astron. Soc., 460, 4098-4108 (2016) · doi:10.1093/mnras/stw1249
[8] Seljak, Uros, Extracting primordial non-gaussianity without cosmic variance, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.021302
[9] Schmittfull, Marcel; Seljak, Uros, Parameter constraints from cross-correlation of CMB lensing with galaxy clustering, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.123540
[10] Yu, Byeonghee; Knight, Robert Z.; Sherwin, Blake D.; Ferraro, Simone; Knox, Lloyd; Schmittfull, Marcel, Towards Neutrino Mass from Cosmology without Optical Depth Information (2018)
[11] DES, SPT Collaboration; Omori, Y., Dark Energy Survey Year 1 Results: tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.043501
[12] LSST Dark Energy Science Collaboration; Zhang, Zhuoqi (Jackie); Chang, Chihway; Larsen, Patricia; Secco, Lucas F.; Zuntz, Joe, Transitioning from Stage-III to Stage-IV: cosmology from galaxy×CMB lensing and shear×CMB lensing, Mon. Not. Roy. Astron. Soc., 514, 2181-2197 (2022) · doi:10.1093/mnras/stac1407
[13] Sgier, Raphael; Lorenz, Christiane; Refregier, Alexandre; Fluri, Janis; Zürcher, Dominik; Tarsitano, Federica, Combined 13×2-point analysis of the Cosmic Microwave Background and Large-Scale Structure: implications for the S_8-tension and neutrino mass constraints (2021)
[14] Sailer, Noah; Castorina, Emanuele; Ferraro, Simone; White, Martin, Cosmology at high redshift — a probe of fundamental physics, JCAP, 12 (2021) · doi:10.1088/1475-7516/2021/12/049
[15] White, Martin, Cosmological constraints from the tomographic cross-correlation of DESI Luminous Red Galaxies and Planck CMB lensing, JCAP, 02 (2022) · doi:10.1088/1475-7516/2022/02/007
[16] Cooray, Asantha, Squared temperature-temperature power spectrum as a probe of the CMB bispectrum, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.043516
[17] Babich, Daniel; Zaldarriaga, Matias, Primordial bispectrum information from CMB polarization, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.083005
[18] Komatsu, Eiichiro; Spergel, David N.; Wandelt, Benjamin D., Measuring primordial non-Gaussianity in the cosmic microwave background, Astrophys. J., 634, 14-19 (2005) · doi:10.1086/491724
[19] Schmittfull, Marcel; Baldauf, Tobias; Seljak, Uroš, Near optimal bispectrum estimators for large-scale structure, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.043530
[20] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Schmittfull, Marcel; Dvorkin, Cora, Capturing non-Gaussianity of the large-scale structure with weighted skew-spectra, JCAP, 04 (2020) · Zbl 1491.83060 · doi:10.1088/1475-7516/2020/04/011
[21] Schmittfull, Marcel; Moradinezhad Dizgah, Azadeh, Galaxy skew-spectra in redshift-space, JCAP, 03 (2021) · Zbl 1484.83153 · doi:10.1088/1475-7516/2021/03/020
[22] Munshi, D.; Namikawa, T.; Kitching, T. D.; McEwen, J. D.; Bouchet, F. R., Weak Lensing Skew-Spectrum, Mon. Not. Roy. Astron. Soc., 498, 6057-6068 (2020) · doi:10.1093/mnras/staa2769
[23] Particle Data Group Collaboration; Patrignani, C., Review of Particle Physics, Chin. Phys. C, 40 (2016) · doi:10.1088/1674-1137/40/10/100001
[24] Dvorkin, Cora, Neutrino Mass from Cosmology: probing Physics Beyond the Standard Model (2019)
[25] Chen, Shu-Fan; Lee, Hayden; Dvorkin, Cora, Precise and accurate cosmology with CMB×LSS power spectra and bispectra, JCAP, 05 (2021) · Zbl 1485.85003 · doi:10.1088/1475-7516/2021/05/030
[26] Liu, Jia; Bird, Simeon; Matilla, José Manuel Zorrilla; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S., MassiveNuS: cosmological Massive Neutrino Simulations, JCAP, 03 (2018) · doi:10.1088/1475-7516/2018/03/049
[27] Dai, Ji-Ping; Verde, Licia; Xia, Jun-Qing, What Can We Learn by Combining the Skew Spectrum and the Power Spectrum?, JCAP, 08 (2020) · Zbl 1492.85011 · doi:10.1088/1475-7516/2020/08/007
[28] P.J.E. Peebles, The large-scale structure of the universe, Princeton University Press, Princeton, NJ, U.S.A. (1980). · Zbl 1422.85005
[29] Lewis, Antony; Challinor, Anthony, Weak gravitational lensing of the CMB, Phys. Rept., 429, 1-65 (2006) · doi:10.1016/j.physrep.2006.03.002
[30] Bartelmann, Matthias; Schneider, Peter, Weak gravitational lensing, Phys. Rept., 340, 291-472 (2001) · Zbl 0971.83518 · doi:10.1016/S0370-1573(00)00082-X
[31] Liu, Jia; Haiman, Zoltán; Hui, Lam; Kratochvil, Jan M.; May, Morgan, The Impact of Magnification and Size Bias on Weak Lensing Power Spectrum and Peak Statistics, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.023515
[32] Hui, Lam; Gaztanaga, Enrique; LoVerde, Marilena, Anisotropic Magnification Distortion of the 3D Galaxy Correlation. 1. Real Space, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.103502
[33] Lee, Hayden; Dvorkin, Cora, Cosmological Angular Trispectra and Non-Gaussian Covariance, JCAP, 05 (2020) · Zbl 1492.85019 · doi:10.1088/1475-7516/2020/05/044
[34] Limber, D. Nelson, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II, Astrophys. J., 119, 655 (1954) · doi:10.1086/145870
[35] Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias, Efficient evaluation of angular power spectra and bispectra, JCAP, 11 (2017) · doi:10.1088/1475-7516/2017/11/054
[36] Hamilton, A. J. S., Uncorrelated modes of the nonlinear power spectrum, Mon. Not. Roy. Astron. Soc., 312, 257-284 (2000) · doi:10.1046/j.1365-8711.2000.03071.x
[37] Senatore, Leonardo; Zaldarriaga, Matias, The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos (2017)
[38] Hu, Wayne; Eisenstein, Daniel J., Small scale perturbations in a general MDM cosmology, Astrophys. J., 498, 497 (1998) · doi:10.1086/305585
[39] Takada, Masahiro; Komatsu, Eiichiro; Futamase, Toshifumi, Cosmology with high-redshift galaxy survey: neutrino mass and inflation, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.083520
[40] Lesgourgues, Julien; Pastor, Sergio, Massive neutrinos and cosmology, Phys. Rept., 429, 307-379 (2006) · doi:10.1016/j.physrep.2006.04.001
[41] Berlind, Andreas A.; Weinberg, David H., The Halo occupation distribution: towards an empirical determination of the relation between galaxies and mass, Astrophys. J., 575, 587-616 (2002) · doi:10.1086/341469
[42] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[43] Tegmark, Max, Measuring cosmological parameters with galaxy surveys, Phys. Rev. Lett., 79, 3806-3809 (1997) · doi:10.1103/PhysRevLett.79.3806
[44] Yadav, Amit P. S.; Komatsu, Eiichiro; Wandelt, Benjamin D., Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background, Astrophys. J., 664, 680-686 (2007) · doi:10.1086/519071
[45] Baldauf, Tobias; Seljak, Uroš; Smith, Robert E.; Hamaus, Nico; Desjacques, Vincent, Halo stochasticity from exclusion and nonlinear clustering, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.083507
[46] Gil-Marín, Héctor; Noreña, Jorge; Verde, Licia; Percival, Will J.; Wagner, Christian; Manera, Marc, The power spectrum and bispectrum of SDSS DR11 BOSS galaxies - I. Bias and gravity, Mon. Not. Roy. Astron. Soc., 451, 539-580 (2015) · doi:10.1093/mnras/stv961
[47] VIRGO Consortium Collaboration; Smith, R. E.; Peacock, J. A.; Jenkins, A.; White, S. D. M.; Frenk, C. S.; Pearce, F. R., Stable clustering, the halo model and nonlinear cosmological power spectra, Mon. Not. Roy. Astron. Soc., 341, 1311 (2003) · doi:10.1046/j.1365-8711.2003.06503.x
[48] Mead, Alexander; Brieden, Samuel; Tröster, Tilman; Heymans, Catherine, HMcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback (2020) · doi:10.1093/mnras/stab082
[49] Gil-Marin, Hector; Wagner, Christian; Fragkoudi, Frantzeska; Jimenez, Raul; Verde, Licia, An improved fitting formula for the dark matter bispectrum, JCAP, 02 (2012) · doi:10.1088/1475-7516/2012/02/047
[50] Takahashi, Ryuichi; Nishimichi, Takahiro; Namikawa, Toshiya; Taruya, Atsushi; Kayo, Issha; Osato, Ken, Fitting the nonlinear matter bispectrum by the Halofit approach, Astrophys. J., 895, 113 (2020) · doi:10.3847/1538-4357/ab908d
[51] Pratten, Geraint; Lewis, Antony, Impact of post-Born lensing on the CMB, JCAP, 08 (2016) · doi:10.1088/1475-7516/2016/08/047
[52] Fabbian, Giulio; Lewis, Antony; Beck, Dominic, CMB lensing reconstruction biases in cross-correlation with large-scale structure probes, JCAP, 10 (2019) · Zbl 1515.83017 · doi:10.1088/1475-7516/2019/10/057
[53] Di Dio, Enea; Durrer, Ruth; Maartens, Roy; Montanari, Francesco; Umeh, Obinna, The Full-Sky Angular Bispectrum in Redshift Space, JCAP, 04 (2019) · doi:10.1088/1475-7516/2019/04/053
[54] Hearin, Andrew P., Forward Modeling of Large-Scale Structure: an open-source approach with Halotools, Astron. J., 154, 190 (2017) · doi:10.5281/zenodo.835895
[55] Petri, Andrea, Mocking the Weak Lensing universe: the LensTools python computing package, Astron. Comput., 17, 73-79 (2016) · doi:10.1016/j.ascom.2016.06.001
[56] Petri, Andrea; Haiman, Zoltán; May, Morgan, Sample variance in weak lensing: how many simulations are required?, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.063524
[57] Coulton, William R.; Liu, Jia; Madhavacheril, Mathew S.; Böhm, Vanessa; Spergel, David N., Constraining Neutrino Mass with the Tomographic Weak Lensing Bispectrum, JCAP, 05 (2019) · doi:10.1088/1475-7516/2019/05/043
[58] Bucher, Martin; Van Tent, Bartjan; Carvalho, Carla Sofia, Detecting Bispectral Acoustic Oscillations from Inflation Using a New Flexible Estimator, Mon. Not. Roy. Astron. Soc., 407, 2193 (2010) · doi:10.1111/j.1365-2966.2010.17089.x
[59] Bucher, Martin; Racine, Benjamin; van Tent, Bartjan, The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches, JCAP, 05 (2016) · doi:10.1088/1475-7516/2016/05/055
[60] Hu, Wayne, Weak lensing of the CMB: a harmonic approach, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.043007
[61] Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin; Goodman, Jonathan, emcee: the MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306-312 (2013) · doi:10.1086/670067
[62] Munshi, Dipak; Lee, Hayden; Dvorkin, Cora; McEwen, Jason D., Weak Lensing Trispectrum and Kurt-Spectra (2021)
[63] Lewis, Antony; Challinor, Anthony; Lasenby, Anthony, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., 538, 473-476 (2000) · doi:10.1086/309179
[64] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XV. Gravitational lensing, Astron. Astrophys., 594, A15 (2016) · doi:10.1051/0004-6361/201525941
[65] Lewis, Antony, GetDist: a Python package for analysing Monte Carlo samples (2019)
[66] Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian, Galaxy Bias and Primordial Non-Gaussianity, JCAP, 12 (2015) · doi:10.1088/1475-7516/2015/12/043
[67] Villaescusa-Navarro, Francisco; Marulli, Federico; Viel, Matteo; Branchini, Enzo; Castorina, Emanuele; Sefusatti, Emiliano, Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies, JCAP, 03 (2014) · doi:10.1088/1475-7516/2014/03/011
[68] Castorina, Emanuele; Sefusatti, Emiliano; Sheth, Ravi K.; Villaescusa-Navarro, Francisco; Viel, Matteo, Cosmology with massive neutrinos II: on the universality of the halo mass function and bias, JCAP, 02 (2014) · doi:10.1088/1475-7516/2014/02/049
[69] Lazeyras, Titouan; Wagner, Christian; Baldauf, Tobias; Schmidt, Fabian, Precision measurement of the local bias of dark matter halos, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/018
[70] D. Jeong, Cosmology with high (z>1) redshift galaxy surveys, Ph.D. thesis, University of Texas, Austin, TX, U.S.A. (2010).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.