×

Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components. (English) Zbl 1308.35163

This is a great paper showing the local null controllability of the Navier-Stokes system on a bounded domain \(\Omega \) of \({\mathbb{R}}^3\) with null Dirichlet boundary conditions. Specifically, the control is distributed in an arbitrary nonempty open subset of \(\Omega \) and has two vanishing components. While the linearized (around zero) system is not necessarily null controllable, even if the control is distributed in the entire \(\Omega \) (as proved by J.-L. Lions and E. Zuazua [Lect. Notes Pure Appl. Math. 177, 221–235 (1996; Zbl 0852.35112)]), the authors choose to linearize the system around a specific nonzero particular solution and show that the corresponding linearized system is null controllable. This allows them to show that the original system is locally null controllable by using an inverse mapping argument.

MSC:

35Q30 Navier-Stokes equations
93B05 Controllability

Citations:

Zbl 0852.35112

References:

[1] Alabau-Boussouira, F., Léautaud, M.: Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. (9) 99(5), 544-576 (2013) · Zbl 1293.35167 · doi:10.1016/j.matpur.2012.09.012
[2] Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal control. Contemporary Soviet Mathematics. Consultants Bureau, New York (1987) (translated from the Russian by V. M. Volosov) · Zbl 1170.93008
[3] Ammar-Khodja, F., Benabdallah, A., Dupaix, C., González-Burgos, M.: A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl. 1(3), 427-457 (2009) · Zbl 1170.93008
[4] Ammar-Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. Journal de Mathématiques Pures et Appliquées 96(6), 555-590 (2011). · Zbl 1237.35085
[5] Ammar-Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1(3), 267-306 (2011) · Zbl 1235.93041 · doi:10.3934/mcrf.2011.1.267
[6] Carreño, N., Guerrero, S.: Local null controllability of the \[NN\]-dimensional Navier-Stokes system with \[N-1N-1\] scalar controls in an arbitrary control domain. J. Math. Fluid Mech. 15(1), 139-153 (2013) · Zbl 1278.35173 · doi:10.1007/s00021-012-0093-2
[7] Coron, J.-M.: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Syst. 5(3), 295-312 (1992) · Zbl 0760.93067 · doi:10.1007/BF01211563
[8] Coron, J.-M.: Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317(3), 271-276 (1993) · Zbl 0781.76013
[9] Coron, J.-M.: On the controllability of the \[22\]-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var. 1, 35-75 (1995/1996) (electronic) · Zbl 0872.93040
[10] Coron, J.-M.: Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2007) · Zbl 1179.35209
[11] Coron, J.-M., Fursikov, A.V.: Global exact controllability of the \[22\] D Navier-Stokes equations on a manifold without boundary. Russ. J. Math. Phys. 4(4), 429-448 (1996) · Zbl 0938.93030
[12] Coron, J.-M., Guerrero, S.: Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component. J. Math. Pures Appl. (9) 92(5), 528-545 (2009) · Zbl 1179.35209 · doi:10.1016/j.matpur.2009.05.015
[13] Coron, J.-M., Guerrero, S.: Null controllability of the \[NN\]-dimensional Stokes system with \[N-1N-1\] scalar controls. J. Differ. Equ. 246(7), 2908-2921 (2009) · Zbl 1172.35042 · doi:10.1016/j.jde.2008.10.019
[14] Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math. 10, 517-534 (1958) · Zbl 0091.37404 · doi:10.4153/CJM-1958-052-0
[15] Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. (9) 83(12), 1501-1542 (2004) · Zbl 1267.93020 · doi:10.1016/j.matpur.2004.02.010
[16] Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Some controllability results for the \[NN\]-dimensional Navier-Stokes and Boussinesq systems with \[N-1N-1\] scalar controls. SIAM J. Control Optim. 45(1), 146-173 (2006) (electronic) · Zbl 1109.93006
[17] Fursikov, A.V., Imanuvilov, O.Y.: Controllability of evolution equations. Lecture Notes Series, vol. 34. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996) · Zbl 0862.49004
[18] Fursikov, A.V., Imanuvilov, O.Y.: Exact controllability of the Navier-Stokes and Boussinesq equations. Russ. Math. Surveys 54, 565-618 (1999) · Zbl 0970.35116 · doi:10.1070/RM1999v054n03ABEH000153
[19] Gromov, M.: Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Results in Mathematics and Related Areas (3). Springer, Berlin (1986) · Zbl 0651.53001
[20] Guerrero, S.: Controllability of systems of Stokes equations with one control force: existence of insensitizing controls. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(6), 1029-1054 (2007) · Zbl 1248.93025
[21] Gueye, M.: Insensitizing controls for the Navier-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(5), 825-844 (2013) · Zbl 1457.35025
[22] Imanuvilov, O.Y.: On exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var. 3, 97-131 (1998) (electronic) · Zbl 1052.93502
[23] Imanuvilov, O.Y.: Remarks on exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var. 6, 39-72 (2001) (electronic) · Zbl 0961.35104
[24] Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968) · Zbl 0165.10801
[25] Lions, J.-L., Zuazua, E.: A generic uniqueness result for the Stokes system and its control theoretical consequences. In Partial differential equations and applications, volume 177 of Lecture Notes in Pure and Applied Mathematics, pp. 221-235. Dekker, New York (1996) · Zbl 0852.35112
[26] Mauffrey, K.: On the null controllability of a \[3\times 33\]×3 parabolic system with non-constant coefficients by one or two control forces. J. Math. Pures Appl. (9) 99(2), 187-210 (2013) · Zbl 1256.93022 · doi:10.1016/j.matpur.2012.06.010
[27] Pothen, A., Fan, C.-J.: Computing the block triangular form of a sparse matrix. ACM Trans. Math. Software 16(4), 303-324 (1990) · Zbl 0900.65117 · doi:10.1145/98267.98287
[28] Temam, R.: Navier-Stokes equations, volume 2 of Studies in Mathematics and its Applications. Theory and Numerical Analysis. revised edition, with an appendix by F. Thomasset. North-Holland Publishing Co., Amsterdam (1979) · Zbl 0426.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.