×

Derived equivalences and higher \(K\)-groups of a class of KLR algebras. (English) Zbl 1448.18023

Summary: For a Khovanov-Lauda-Rouquier algebra \(\mathcal K\) defined by an unoriented graph of type \(A_n\), we prove that \(\mathcal K\) is derived equivalent to a matrix-like algebra \(\mathcal T.\) Under this equivalence, the higher \(K\)-groups and global dimension of \(\mathcal K\) have been described.

MSC:

18G80 Derived categories, triangulated categories
16G10 Representations of associative Artinian rings
13B30 Rings of fractions and localization for commutative rings
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16E35 Derived categories and associative algebras
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
16D90 Module categories in associative algebras
Full Text: DOI

References:

[1] Berrick, A. J.; Keating, M. E., The K-theory of triangular matrix rings, Contemp. Math, 55, Part I, 69-74 (1986) · Zbl 0595.18005
[2] DuggerShipley, D. B., K-theory and derived equivalences, Duke Math. J, 124, 3, 587-617 (2004) · Zbl 1056.19002 · doi:10.1215/S0012-7094-04-12435-2
[3] Hu, W.; Xi, C. C., \(####\)-split sequences and derived equivalences, Adv. Math, 227, 292-318 (2011) · Zbl 1260.16017
[4] Kang, S.; Kashiwara, M., Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math, 190, 3, 699-742 (2012) · Zbl 1280.17017 · doi:10.1007/s00222-012-0388-1
[5] Kato, S., Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J, 163, 3, 619-663 (2014) · Zbl 1292.17012 · doi:10.1215/00127094-2405388
[6] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 14, 309-347 (2009) · Zbl 1188.81117 · doi:10.1090/S1088-4165-09-00346-X
[7] Kleshchev, A. S.; Loubert, J. W.; Miemietz, V., Affine cellularity of Khovanov-Lauda-Rouquier algebras in type A, J. Lond. Math. Soc, 88, 2, 338-358 (2013) · Zbl 1293.20008 · doi:10.1112/jlms/jdt023
[8] McNamara, P. J., Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math, 707, 103-124 (2015) · Zbl 1378.17018
[9] Rouquier, R., Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq, 19, 2, 359-410 (2012) · Zbl 1247.20002 · doi:10.1142/S1005386712000247
[10] Varagnolo, M.; Vasserot, E., Canonical bases and KLR-algebras, J. Reine Angew. Math, 659, 67-100 (2011) · Zbl 1229.17019
[11] Xi, C. C., On the finitistic dimension conjecture II: related to finite global dimension, Adv. Math, 201, 1, 116-142 (2006) · Zbl 1103.18011 · doi:10.1016/j.aim.2005.02.002
[12] Xi, C. C., Higher algebraic K-groups and \(####\)-split sequences, Math. Z, 273, 3-4, 1025-1052 (2013) · Zbl 1273.19002 · doi:10.1007/s00209-012-1042-8
[13] Xi, C. C.; Yin, S. J., Cellularity of centrosymmetric matrix algebras and Frobenius extensions, Linear Algebra Appl, 590, 317-329 (2020) · Zbl 1441.16040 · doi:10.1016/j.laa.2020.01.002
[14] Xu, H. B.; Yang, S. L., Algebras associated to σ-persymmetric matrices and KLR algebras, Adv. Math. (China), 46, 6, 875-887 (2017) · Zbl 1399.15037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.