×

Towards a regularity theory for integral Menger curvature. (English) Zbl 1362.53007

Summary: We generalize the notion of integral Menger curvature introduced by O. Gonzalez and J. H. Maddocks [Proc. Natl. Acad. Sci. USA 96, No. 9, 4769–4773 (1999; Zbl 1057.57500)] by decoupling the powers in the integrand. This leads to a new two-parameter family of knot energies \(\text{intM}^{(p,q)}\). We classify finite-energy curves in terms of Sobolev-Slobodeckii spaces. Moreover, restricting to the range of parameters leading to a sub-critical Euler-Lagrange equation, we prove existence of minimizers within any knot class via a uniform bi-Lipschitz bound. Consequently, \(\text{intM}^{(p,q)}\) is a knot energy in the sense of O’Hara. Restricting to the non-degenerate sub-critical case, a suitable decomposition of the first variation allows to establish a bootstrapping argument that leads to \(C^{\infty}\)-smoothness of critical points.

MSC:

53A04 Curves in Euclidean and related spaces
57M25 Knots and links in the \(3\)-sphere (MSC2010)

Citations:

Zbl 1057.57500

References:

[1] Blatt, S.: Note on continuously differentiable isotopies. - Report 34, Institute for Mathematics, RWTH Aachen, 2009.
[2] Blatt, S.: Boundedness and regularizing effects of O’Hara’s knot energies. - J. Knot Theory Ramifications 21:1250010, 2012, 1–9. · Zbl 1238.57007
[3] Blatt, S. A note on integral Menger curvature for curves. - Math. Nachr. 286:2-3, 2013, 149–159. · Zbl 1271.57006
[4] Blatt, S., and S. Kolasiński: Sharp boundedness and regularizing effects of the integral Menger curvature for submanifolds. - Adv. Math. 230:3, 2012, 839–852. · Zbl 1246.53005
[5] Blatt, S., and Ph. Reiter: Stationary points of O’Hara’s knot energies. - Manuscripta Math. 140:1-2, 2013, 29–50. · Zbl 1271.57007
[6] Blatt, S. and Ph. Reiter: Regularity theory for tangent-point energies. - Adv. Calc. Var. (to appear), doi:10.1515/acv-2013-0020.
[7] Blatt, S., and Ph. Reiter: How nice are critical knots? Regularity theory for knot energies. - Preprint, 2013.
[8] Blatt, S., and Ph. Reiter: Modeling repulsive forces on fibres via knot energies. - Molecular Based Mathematical Biology (to appear).
[9] Blatt, S., Ph. Reiter, and A. Schikorra: Hard analysis meets critical knots (Stationary points of the Möbius energy are smooth). - ArXiv e-prints, 2012.
[10] Brezis, H.: How to recognize constant functions. A connection with Sobolev spaces. - Uspekhi Mat. Nauk 57:4(346), 2002, 59–74.
[11] Campanato, S.: Proprietà di hölderianità di alcune classi di funzioni. - Ann. Scuola Norm. Sup. Pisa (3) 17, 1963, 175–188. · Zbl 0121.29201
[12] Dudziak, J. J.: Vitushkin’s conjecture for removable sets. - Universitext, Springer, New York, 2010. · Zbl 1205.30002
[13] Freedman, M. H., Z.-X. He, and Z. Wang: Möbius energy of knots and unknots. - Ann. of Math. (2) 139:1, 1994, 1–50. · Zbl 0817.57011
[14] Gonzalez, O., and J. H. Maddocks: Global curvature, thickness, and the ideal shapes of knots. - Proc. Natl. Acad. Sci. USA 96:9, 1999, 4769–4773 (electronic). · Zbl 1057.57500
[15] Gonzalez, O., J. H. Maddocks, F. Schuricht, and H. von der Mosel: Global curvature and self-contact of nonlinearly elastic curves and rods. - Calc. Var. Partial Differ. Equ. 14:1, 2002, 29–68. · Zbl 1006.49001
[16] Hahlomaa, I.: Menger curvature and Lipschitz parametrizations in metric spaces. - Fund. Math. 185:2, 2005, 143–169. · Zbl 1077.54016
[17] Hahlomaa, I.: Curvature integral and Lipschitz parametrization in 1-regular metric spaces. - Ann. Acad. Sci. Fenn. Math. 32:1, 2007, 99–123. · Zbl 1117.28001
[18] Hahlomaa, I.: Menger curvature and rectifiability in metric spaces. - Adv. Math. 219:6, 2008, 1894–1915. · Zbl 1153.28002
[19] He, Z.-X.: The Euler–Lagrange equation and heat flow for the Möbius energy. - Comm. Pure Appl. Math. 53:4, 2000, 399–431. · Zbl 1042.53043
[20] Hermes, T.: Analysis of the first variation and a numerical gradient flow for integral Menger curvature. - PhD thesis, RWTH Aachen, 2012.
[21] Kass, S.: Karl Menger [1902–1985]. - Notices Amer. Math. Soc. 43:5, 1996, 558–561. · Zbl 0987.01500
[22] Kolasiński, S.: Integral Menger curvature for sets of arbitrary dimension and codimension. ArXiv e-prints, 2010.
[23] Kolasiński, S.: Geometric Sobolev-like embedding using high-dimensional Menger-like curvature. - ArXiv e-prints, 2012. Towards a regularity theory for integral Menger curvature181
[24] Kolasiński, S., P. Strzelecki, and H. von der Mosel: Characterizing W2,psubmanifolds by p-integrability of global curvatures. - Geom. Funct. Anal. 23:3, 2013, 937–984. · Zbl 1276.28012
[25] Kolasiński, S., and M. Szumańska: Minimal Hölder regularity implying finiteness of integral Menger curvature. - Manuscripta Math. 141:1-2, 2013, 125–147. · Zbl 1263.49053
[26] Léger, J. C.: Menger curvature and rectifiability. - Ann. of Math. (2) 149:3, 1999, 831–869. · Zbl 0966.28003
[27] Lin, Y., and P. Mattila: Menger curvature and C1regularity of fractals. - Proc. Amer. Math. Soc. 129:6, 2001, 1755–1762 (electronic). · Zbl 0966.28004
[28] Litherland, R. A., J. Simon, O. Durumeric, and E. Rawdon: Thickness of knots. Topology Appl. 91:3, 1999, 233–244. · Zbl 0924.57011
[29] Mel nikov, M. S.: Analytic capacity: a discrete approach and the curvature of measure. Mat. Sb. 186:6, 1995, 57–76.
[30] Mel nikov, M. S., and J. Verdera: A geometric proof of the L2boundedness of the Cauchy integral on Lipschitz graphs. - Internat. Math. Res. Notices 7, 1995, 325–331.
[31] Menger, K.: Untersuchungen über allgemeine Metrik. - Math. Ann. 103:1, 1930, 466–501. · JFM 56.0508.04
[32] O’Hara, J.: Family of energy functionals of knots. - Topology Appl. 48:2, 1992, 147–161.
[33] O’Hara, J.: Energy of knots and conformal geometry. - Series on Knots and Everything 33, World Scientific Publishing Co. Inc., River Edge, NJ, 2003.
[34] Reiter, Ph.: All curves in a C1-neighbourhood of a given embedded curve are isotopic. Report 4, Institute for Mathematics, RWTH Aachen, 2005.
[35] Reiter, Ph.: Regularity theory for the Möbius energy. - Commun. Pure Appl. Anal. 9:5, 2010, 1463–1471. · Zbl 1204.57007
[36] Reiter, Ph.: Repulsive knot energies and pseudodifferential calculus for O’Hara’s knot energy family E({\(\alpha\)}), {\(\alpha\)} \in [2, 3). - Math. Nachr. 285:7, 2012, 889–913. · Zbl 1248.42009
[37] Runst, T., and W. Sickel: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. - de Gruyter Ser. Nonlinear Anal. Appl. 3, Walter de Gruyter & Co., Berlin, 1996.
[38] Scholtes, S.: Tangency properties of sets with finite geometric curvature energies. - Fund. Math. 218, 2012, 165–191. · Zbl 1269.28002
[39] Strzelecki, P., M. Szumańska, and H. von der Mosel: A geometric curvature double integral of Menger type for space curves. - Ann. Acad. Sci. Fenn. Math. 34:1, 2009, 195–214.
[40] Strzelecki, P., M. Szumańska, and H. von der Mosel: Regularizing and self-avoidance effects of integral Menger curvature. - Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9:1, 2010, 145– 187. · Zbl 1193.28007
[41] Strzelecki, P., M. Szumańska, and H. von der Mosel: On some knot energies involving Menger curvature. - Topology Appl. 160:13, 2013, 1507–1529.
[42] Strzelecki, P., and H. von der Mosel: On rectifiable curves with Lp-bounds on global curvature: self-avoidance, regularity, and minimizing knots. - Math. Z. 257:1, 2007, 107–130. · Zbl 1354.49028
[43] Strzelecki, P., and H. von der Mosel: How averaged Menger curvatures control regularity and topology of curves and surfaces. - Preprint, 2013.
[44] Strzelecki, P., and H. von der Mosel: Menger curvature as a knot energy. - Phys. Rep. 530:3, 2013, 257–290. · Zbl 1358.57019
[45] Tolsa, X.: Analytic capacity, the Cauchy transform, and non-homogeneous CalderónZygmund theory. - Progr. Math. 307, Birkhäuser/Springer, Cham, 2014. · Zbl 1290.42002
[46] Verdera, J.: L2boundedness of the Cauchy integral and Menger curvature. - In: Harmonic analysis and boundary value problems (Fayetteville, AR, 2000), Contemp. Math. 277, Amer. Math. Soc., Providence, RI, 2001, 139–158. Received 30 January 2014 ●Accepted 19 June 2014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.