×

A periodic and seasonal statistical model for non-negative integer-valued time series with an application to dispensed medications in respiratory diseases. (English) Zbl 1481.62061

Summary: This paper introduces a new class of models for non-negative integer-valued time series with a periodic and seasonal autoregressive structure. Some properties of the model are discussed and the conditional quasi-maximum likelihood method is used to estimate the parameters. The consistency and asymptotic normality of the estimators are established. Their performances are investigated for finite sample sizes and the empirical results indicate that the method gives accurate estimates. The proposed model is applied to analyse the daily number of antibiotic dispensing medication for the treatment of respiratory diseases, registered in a health center of Vitória, Brazil.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M15 Inference from stochastic processes and spectral analysis
92C50 Medical applications (general)

References:

[1] World Health Organization and others, How to investigate drug use in health facilities: selected drug use indicators, Technical Report (1993), Geneva: World Health Organization
[2] McDowell, R.; Bennett, K.; Moriarty, F.; Clarke, S.; Barry, M.; Fahey, T., An evaluation of prescribing trends and patterns of claims within the Preferred Drugs Initiative in Ireland (2011-2016): an interrupted time-series study, BMJ Open, 8, 4, e019315 (2018)
[3] Caillaud, D.; Cheriaux, M.; Martin, S.; Ségala, C.; Dupuy, N.; Evrard, B.; Thibaudon, M., Short-term effect of outdoor mold spore exposure on prescribed allergy medication sales in Central France, Clinical & Experimental Allergy, 48, 7, 837-845 (2018)
[4] Oudin, A.; Bråbäck, L.; Oudin Åström, D.; Forsberg, B., Air pollution and dispensed medications for asthma, and possible effect modifiers related to mental health and socio-economy: A longitudinal cohort study of swedish children and adolescents, International Journal of Environmental Research and Public Health, 14, 11, 1392 (2017)
[5] Youngster, I.; Avorn, J.; Belleudi, V.; Cantarutti, A.; Díez-Domingo, J.; Kirchmayer, U.; Park, B.-J.; Peiró, S.; Sanfélix-Gimeno, G.; Schröder, H., Antibiotic use in children-a cross-national analysis of 6 countries, The Journal of Pediatrics, 182, 239-244 (2017)
[6] Holstiege, J.; Garbe, E., Systemic antibiotic use among children and adolescents in Germany: a population-based study, European Journal of Pediatrics, 172, 6, 787-795 (2013)
[7] McKenzie, E., Some simple models for discrete variate time series, J. Amer. Water. Res. Assoc., 21, 645-650 (1985)
[8] Al-Osh, M.; Alzaid, A. A., First-order integer-valued autoregressive (INAR(1)) process, Journal of Time Series Analysis, 8, 3, 261-275 (1987) · Zbl 0617.62096
[9] Piancastelli, L. S.C.; Barreto-Souza, W., Inferential aspects of the zero-inflated Poisson INAR(1) process, Applied Mathematical Modelling, 74, 457-468 (2019) · Zbl 1481.62060
[10] Qi, X.; Li, Q.; Zhu, F., Modeling time series of count with excess zeros and ones based on INAR(1) model with zero-and-one inflated Poisson innovations, Journal of Computational and Applied Mathematics, 346, 572-590 (2019) · Zbl 1405.62119
[11] Qian, L.; Li, Q.; Zhu, F., Modelling heavy-tailedness in count time series, Applied Mathematical Modelling, 82, 766-784 (2020) · Zbl 1481.62063
[12] Steutel, F. W.; Van Harn, K., Discrete analogues of self-decomposability and stability, The Annals of Probability, 7, 5, 893-899 (1979) · Zbl 0418.60020
[13] Scotto, M. G.; Weiss, C. H.; Gouveia, S., Thinning-based models in the analysis of integer-valued time series: a review, Statistical Modelling, 15, 6, 590-618 (2015) · Zbl 07259004
[14] Latour, A., The multivariate GINAR \(( p )\) process, Advances in Applied Probability, 29, 1, 228-248 (1997) · Zbl 0871.62073
[15] Alzaid, A. A.; Al-Osh, M., An integer-valued \(p\) th-order autoregressive structure (INAR \(( p ))\) process, Journal of Applied Probability, 27, 2, 314-324 (1990) · Zbl 0704.62081
[16] Du, J.-G.; Li, Y., The integer-valued autoregressive (INAR \(( p ))\) model, Journal of Time Series Analysis, 12, 2, 129-142 (1991) · Zbl 0727.62084
[17] Gladyshev, E. G., Periodically correlated random sequences, Sov. Math., 2, 385-388 (1961) · Zbl 0212.21401
[18] Gardner, W. A.; Napolitano, A.; Paura, L., Cyclostationarity: Half a century of research, Signal Processing, 86, 4, 639-697 (2006) · Zbl 1163.94338
[19] Basawa, I. V.; Lund, R., Large sample properties of parameter estimates for periodic ARMA models, Journal of Time Series Analysis, 22, 6, 651-663 (2001) · Zbl 0984.62062
[20] Sarnaglia, A. J.Q.; Reisen, V. A.; Lévy-Leduc, C., Robust estimation of periodic autoregressive processes in the presence of additive outliers, Journal of Multivariate Analysis, 101, 9, 2168-2183 (2010) · Zbl 1323.62087
[21] Solci, C. C.; Reisen, V. A.; Sarnaglia, A. J.Q.; Bondon, P., Empirical study of robust estimation methods for PAR models with application to the air quality area, Communications in Statistics - Theory and Methods, 1-17 (2019)
[22] Monteiro, M.; Scotto, M. G.; Pereira, I., Integer-valued autoregressive processes with periodic structure, Journal of Statistical Planning and Inference, 140, 6, 1529-1541 (2010) · Zbl 1185.62161
[23] Sadoun, M.; Bentarzi, M., Efficient estimation in periodic INAR(1) model: parametric case, Communications in Statistics-Simulation and Computation, 1-21 (2019)
[24] Moriña, D.; Puig, P.; Ríos, J.; Vilella, A.; Trilla, A., A statistical model for hospital admissions caused by seasonal diseases, Statistics in Medicine, 30, 26, 3125-3136 (2011)
[25] Bourguignon, M.; Vasconcellos, K. L.P.; Reisen, V. A.; Ispány, M., A Poisson INAR(1) process with a seasonal structure, Journal of Statistical Computation and Simulation, 86, 2, 373-387 (2016) · Zbl 1510.62353
[26] Buteikis, A.; Leipus, R., An integer-valued autoregressive process for seasonality, Journal of Statistical Computation and Simulation, 90, 3, 391-411 (2020) · Zbl 07194291
[27] Liu, Z.; Li, Q.; Zhu, F., Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal, Brazilian Journal of Probability and Statistics, 34, 2, 251-272 (2020) · Zbl 1445.62232
[28] Nastić, A. S.; Laketa, P. N.; Ristić, M. M., Random environment integer-valued autoregressive process, Journal of Time Series Analysis, 37, 2, 267-287 (2016) · Zbl 1416.62517
[29] Bentarzi, M.; Aries, N., QMLE of periodic integer-valued time series models, Communications in Statistics-Simulation and Computation, 1-27 (2020)
[30] Horn, R. A.; Johnson, C. R., Matrix analysis (2012), Cambridge University Press
[31] Seneta, E., Non-negative matrices and Markov chains (2006), Springer Science & Business Media · Zbl 1099.60004
[32] Graybill, F. A., Matrices with applications in statistics (1983), Wadsworth Inc. · Zbl 0496.15002
[33] Chen, S. X.; Liu, J. S., Statistical applications of the Poisson-binomial and conditional Bernoulli distributions, Statistica Sinica, 7, 4, 875-892 (1997) · Zbl 1067.62511
[34] Sheynin, O., Bortkiewicz’ alleged discovery: the law of small numbers, Historia scientiarum, Second series: International Journal of the History of Science Society of Japan, 18, 1, 36-48 (2008)
[35] Taniguchi, M.; Kakizawa, Y., Asymptotic theory of statistical inference for time series (2000), Springer: Springer New York Berlin Heidelberg · Zbl 0955.62088
[36] McLeod, A. I., Diagnostic checking of periodic autoregression models with application, Journal of Time Series Analysis, 15, 2, 221-233 (1994) · Zbl 0800.62550
[37] Bentarzi, M.; Bentarzi, W., Periodic integer-valued GARCH(1,1) model, Communications in Statistics-Simulation and Computation, 46, 2, 1167-1188 (2017) · Zbl 1362.62163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.