×

Bound states and critical behavior of the Yukawa potential. (English) Zbl 1101.81053

Summary: We investigate the bound states of the Yukawa potential \(V(r)=-\lambda\exp(-\alpha r)/r\), using different algorithms: solving the Schrödinger equation numerically and our Monte Carlo Hamiltonian approach. There is a critical \(\alpha=\alpha_C\), above which no bound state exists. We study the relation between \(\alpha_C\) and \(\lambda\) for various angular momentum quantum number \(l\), and find in atomic units, \(\alpha_C(l)=\lambda[A_1\exp(-l/B_1)+A_2\exp(-l/B_2)]\), with \(A_1=1.020(18)\), \(B_1=0.443(14)\), \(A_2=0.170(17)\), and \(B_2= 2.490(180)\).

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81-08 Computational methods for problems pertaining to quantum theory

References:

[1] Yukawa, H., On the interaction of elementary particles, Proc. Phys. Math Soc. Jap., 1935, 17: 48–57. · Zbl 0010.43201
[2] Sachs, R., Goeppert-Mayer, M., Calculations on a new neutron-proton interaction potential, Phys. Rev., 1938, 53: 991–993. · JFM 64.1493.05 · doi:10.1103/PhysRev.53.991
[3] Harris, G., Attractive two-body interactions in partially ionized plasmas, Phys. Rev., 1962, 125: 1131–1140. · doi:10.1103/PhysRev.125.1131
[4] Schey, H., Schwartz, J., Counting the bound states in short-range central potentials, Phys. Rev. B, 1965, 139: 1428–1432. · Zbl 0133.46005
[5] Rogers, J., Graboske, H., Harwood, E., Bound eigenstates of the static screened Coulomb poten-tial, Phys. Rev. A, 1970, 1: 1577–1586. · doi:10.1103/PhysRevA.1.1577
[6] McEnnan, J., Kissel, L., Pratt, R., Analytic perturbation theory for screened Coulomb potentials: non-relativistic case, Phys. Rev. A, 1976, 13: 532–559. · doi:10.1103/PhysRevA.13.532
[7] Gerry, C., Estimates of the ground states of the Yukawa potential from the Bogoliubov inequality, J. Phys. A, 1984, 17: L313–L315. · doi:10.1088/0305-4470/17/6/001
[8] Kröger, H., Girard, R., Dufour, G., Direct calculation of the S matrix in coordinate space, Phys. Rev. C, 1988, 37: 486–496. · doi:10.1103/PhysRevC.37.486
[9] Girard, R., Kröger, H., Labelle, P. et al., Computation of a long time evolution in a Schrödinger system, Phys. Rev. A, 1988, 37: 3195–3200. · doi:10.1103/PhysRevA.37.3195
[10] Garavelli, S., Oliveira, F., Analytical solution for a Yukawa-type potential, Phys. Rev. Lett., 1991, 66: 1310–1313. · doi:10.1103/PhysRevLett.66.1310
[11] Gomes, O., Chacham, H., Mohallem, J., Variational calculations for the bound-unbound transition of the Yukawa potential, Phys. Rev. A, 1994, 50: 228–231. · doi:10.1103/PhysRevA.50.228
[12] Yukalov, V., Yukalova, E., Oliveira, F., Renormalization-group solutions for Yukawa potential, J. Phys. A, 1998, 31: 4337–4348. · Zbl 0951.81021 · doi:10.1088/0305-4470/31/18/021
[13] Brau, F., Necessary and sufficient conditions for existence of bound states in a central potential, J. Phys. A, 2003, 36: 9907–9913. · Zbl 1047.81516 · doi:10.1088/0305-4470/36/38/308
[14] Bertini, L., Mella, M., Bressanini, D. et al., Borromean binding in H-2 with Yukawa potential: a nonadiabatic quantum Monte Carlo study, Phys. Rev. A, 2004, 69: 042504.
[15] Dean, D., Drummond, I., Horgan, R., Effective diffusion constant in a two-dimensional medium of charged point scatterers, J. Phys. A, 2004, 37: 2039–2046. · Zbl 1049.82061 · doi:10.1088/0305-4470/37/6/005
[16] De-Leo, S., Rotelli, P., Amplification of coupling for Yukawa potentials, Phys. Rev. D, 2004, 69: 034006.
[17] Khrapak, S., Ivlev, A., Morfill, G. et al., Scattering in the attractive Yukawa potential in the limit of strong interaction, Phys. Rev. Lett., 2003, 90: 225002.
[18] Iorio, L., Constraints to a Yukawa gravitational potential from laser data to LAGEOS satellites, Phys. Lett. A, 2002, 298: 315–318. · doi:10.1016/S0375-9601(02)00580-7
[19] Gregory, E., Guo, S., Kröger, H. et al., Hamiltonian lattice QCD at finite chemical potential, Phys. Rev. D, 2000, 62: 054508.
[20] Luo, X. Q., Gregory, E., Guo, S. et al., QCD at Finite Density: in Non-Perturbative Methods and Lattice QCD, Singapore: World Scientific, 2001, 138–149.
[21] Fang, Y., Luo, X. Q., Hamiltonian lattice quantum chromodynamics at finite density with Wilson fermions, Phys. Rev. D, 2004, 69: 114501.
[22] Luo, X. Q., Tricritical point of lattice QCD with Wilson quarks at finite temperature and density, Phys. Rev. D, 2004, 70, 091504.
[23] Press, W., Teukolsky, S., Vetterling, W. et al., Numerical Recipes in C, Cam-bridge: Can bridge University Press, 1992. · Zbl 0778.65003
[24] Jirari, H., Kröger, H., Luo, X. Q. et al., Monte Carlo Hamiltonian, Phys. Lett. A, 1999: 258: 6–14. · doi:10.1016/S0375-9601(99)00304-7
[25] Metropolis, N., Rosenbluth, A., Rosenbluth, M. et al., Equation of state calculations by fast computing machines, J. Chem. Phys., 1953, 21: 1087–1092. · doi:10.1063/1.1699114
[26] Luo, X.Q., Chen, Q., Estimate for the 0++ glueball mass in QCD, Mod. Phys. Lett. A, 1996, 11: 2435–2442. · doi:10.1142/S0217732396002423
[27] Luo, X. Q., Chen, Q., Guo, S. et al., Glueball masses in quantum chromodynamics, Nucl. Phys. B, 1997, 53: 243–245. · doi:10.1016/S0920-5632(96)00626-3
[28] Luo, X. Q., Huang, C., Jiang, J.et al., Monte Carlo Hamiltonian-from statistical physics to quantum theory, Physica A, 2000, 281: 201–206. · doi:10.1016/S0378-4371(00)00044-3
[29] Luo, X.Q., Huang, C., Jiang, J.et al., Quantum theory with many degrees of freedom from Monte Carlo Hamiltonian, Nucl. Phys. B, 2000, 83: 810–812.
[30] Jirari, H., Kröger, H., Huang, C. et al., Monte Carlo Hamiltonian, Nucl. Phys. B, 2000, 83: 953–955.
[31] Jiang, J., Huang, C., Luo, X. Q. et al., Hamiltonian Monte Carlo application to (2+1)-dimensional quantum mechanics, Commun. Theor. Phys., 2000, 34: 723–728.
[32] Huang, C., Jiang, J., Luo, X. Q. et al., Monte Carlo effective Hamiltonian in (1+1)-dimensional case, High Energy Phys. Nucl. Phys., 2000, 24: 478–483.
[33] Luo, X. Q., Xu, H., Yang, J. et al., (3+1)-dimensional quantum mechanics from Monte Carlo Hamiltonian: harmonic oscillator, Commun. Theor. Phys., 2001, 36: 7–10. · Zbl 1164.81307
[34] Luo, X. Q., Liu, J., Huang, C. et al., Monte Carlo Hamiltonian: the linear potentials, Commun. Theor. Phys., 2002, 38: 561–565.
[35] Luo, X. Q., Jirari, H., Kröger, H. et al., Monte Carlo Hamiltonian: Generalization to Quantum Field Theory, in non-Perturbative Methods and Lattice QCD, Singapore: World Scientific, 2001: 100.
[36] Huang, C. Q., Luo, X. Q., Kröger, H.et al., Monte Carlo Hamiltonian from stochastic basis, Phys. Lett., 2002, A299: 483–493. · Zbl 0996.81120
[37] Kröger, H., Luo, X. Q., Moriarty, K., New way to compute excited states and thermodynamics: Monte Carlo Hamiltonian, Nucl. Phys., 2003, B119: 508–510. · Zbl 1097.82535
[38] Kröger, H., Luo, X. Q., Moriarty, K., Thermodynamical observables in a finite temperature window from the Monte Carlo Hamiltonian, Math Comput Simul. 2003, 62: 377–383. · Zbl 1139.82319 · doi:10.1016/S0378-4754(02)00230-6
[39] Feynman, R., Hibbs, A., Quantum Mechanics And Path Integrals, New York: McGraw-Hill, 1965. · Zbl 0176.54902
[40] Luo, X. Q., Cheng, X., Kröger, H., Monte Carlo Hamiltonian: inverse potential, Commun. Theor. Phys., 2004, 41: 509–512. · Zbl 1167.81307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.