×

A fast explicit operator splitting method for passive scalar advection. (English) Zbl 1203.76126

Summary: The dispersal and mixing of scalar quantities such as concentrations or thermal energy are often modeled by advection-diffusion equations. Such problems arise in a wide variety of engineering, ecological and geophysical applications. In these situations a quantity such as chemical or pollutant concentration or temperature variation diffuses while being transported by the governing flow. In the passive scalar case, this flow prescribed and unaffected by the scalar. Both steady laminar and complex (chaotic, turbulent or random) time-dependent flows are of interest and such systems naturally lead to questions about the effectiveness of the stirring to disperse and mix the scalar. The development of reliable numerical methods for advection-diffusion equations is crucial for understanding their properties, both physical and mathematical. In this paper, we extend a fast explicit operator splitting method, recently proposed in [A. Chertock, A. Kurganov, G. Petrova, Int. J. Numer. Methods Fluids 59, No. 3, 309–332 (2009; Zbl 1157.65436)], for solving deterministic convection-diffusion equations, to the problems with random velocity fields and singular source terms. A superb performance of the method is demonstrated on several two-dimensional examples.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1157.65436
Full Text: DOI

References:

[1] Chertock, A., Kashdan, E., Kurganov, A.: In: Benzoni-Gavage, S., Serre, D. (eds.) Propagation of Diffusing Pollutant by a Hybrid Eulerian-Lagrangian Method. Hyperbolic Problems: Theory, Numerics, Applications, Lyon, 2006, pp. 371–380. Springer, Berlin (2008) · Zbl 1354.76115
[2] Chertock, A., Kurganov, A.: On splitting-based numerical methods for convection-diffusion equations. In: Puppo, G., Russo, G. (eds.) Numerical Methods for Balance Laws, Aracne editrice S.r.l., Rome (2010) · Zbl 1266.65143
[3] Chertock, A., Kurganov, A., Petrova, G.: Fast explicit operator splitting method. Application to the polymer system. In: Benkhaldoun, F., Ouazar, D., Raghay, S. (eds.) Finite Volumes for Complex Applications, vol. IV, pp. 63–72. Hermes Science Publishing, London (2005) · Zbl 1374.82033
[4] Chertock, A., Kurganov, A., Petrova, G.: Fast explicit operator splitting method for convection-diffusion equations. Int. J. Numer. Meth. Fluids 59, 309–332 (2009) · Zbl 1157.65436 · doi:10.1002/fld.1355
[5] Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced numerical approximation of nonlinear hyperbolic equations. In: Quarteroni, A. (ed.) CIME Lecture Notes. Lecture Notes in Mathematics, vol. 1697. Springer, Berlin (1997)
[6] Doering, C.R., Thiffeault, J.-L.: Multiscale mixing efficiencies for steady sources. Phys. Rev. E 74, 025301(R) (2006) · doi:10.1103/PhysRevE.74.025301
[7] Drummond, I.T.: Path-integral methods for turbulent diffusion. J. Fluid Mech. 123, 59–68 (1982) · Zbl 0531.76058 · doi:10.1017/S002211208200295X
[8] Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996) · Zbl 0860.65075
[9] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[10] Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003) · Zbl 1030.65100
[11] Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics. John Wiley & Sons Ltd., Chichester (1997) · Zbl 0872.76001
[12] Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007) · Zbl 1164.65455
[13] Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001) · Zbl 0998.65091 · doi:10.1137/S1064827500373413
[14] Kurganov, A., Tadmor, E.: New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000) · Zbl 0987.65085 · doi:10.1006/jcph.2000.6459
[15] Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18, 584–608 (2002) · Zbl 1058.76046 · doi:10.1002/num.10025
[16] Lee, J., Fornberg, B.: A split step approach for the 3-D Maxwell’s equations. J. Comput. Appl. Math. 158(2), 485–505 (2003) · Zbl 1029.65094 · doi:10.1016/S0377-0427(03)00484-9
[17] LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
[18] Lie, K.-A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24(4), 1157–1174 (2003) · Zbl 1038.65078 · doi:10.1137/S1064827501392880
[19] Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 314(4–5), 237–574 (1999) · doi:10.1016/S0370-1573(98)00083-0
[20] Marchuk, G.I.: Metody Rasshchepleniya (Russian) [Splitting Methods] Nauka, Moscow (1988) · Zbl 0653.65065
[21] Marchuk, G.I.: Splitting and alternating direction methods. In: Handbook of Numerical Analysis, vol. I, pp. 197–462. North-Holland, Amsterdam (1990) · Zbl 0875.65049
[22] Medovikov, A.A.: DUMKA 3 code, available at http://dumkaland.org/
[23] Medovikov, A.A.: High order explicit methods for parabolic equations. BIT 38(2), 372–390 (1998) · Zbl 0909.65060 · doi:10.1007/BF02512373
[24] Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990) · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
[25] Okabe, T., Eckhardt, B., Thiffeault, J.-L., Doering, C.R.: Mixing effectiveness depends on the source-sink structure: simulation results. J. Stat. Mech. Theory Exp. P07018, 1–13 (2008)
[26] Plasting, S.C., Young, W.R.: A bound on scalar variance for the advection-diffusion equation. J. Fluid Mech. 552, 289–298 (2006) · Zbl 1088.76067 · doi:10.1017/S0022112006008639
[27] Russo, G.: Central schemes and systems of balance laws. In: Hyperbolic Partial Differential Equations, Hamburg, 2001, pp. 59–114. Vieweg, Braunschweig (2002)
[28] Shaw, T.A., Thiffeault, J.-L., Doering, C.R.: Stirring up trouble: multi-scale mixing measures for steady scalar sources. Phys. D 231(2), 143–164 (2007) · Zbl 1128.35087 · doi:10.1016/j.physd.2007.05.001
[29] Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[30] Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[31] Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990) · doi:10.1016/0375-9601(90)90092-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.