×

Wolff-type integral system including \(m\) equations. (English) Zbl 1492.45005

The following Wolff-type integral system is considered: \[ \begin{cases} u_i(x)=C_i(x)W_{\beta,\gamma}(u_{i+1}^{p_{i+1}})(x), \quad i=1,\ldots,m-1, \\ u_m(x)=C_m(x)W_{\beta,\gamma}(u_{1}^{p_{1}})(x), \end{cases} \] where \(n\geq 1\), \(p_i\neq 0\), \(\gamma>1\), \(\beta>0\) and \(\beta\gamma\neq n\). The double-bounded functions \(C_(x)\) satisfy the conditions \[ 0<c\leq C_i(x)\leq C<\infty, \quad i=1,\dots,m. \] Here, \(W_{\beta,\gamma}(f)(x)\) is the Wolff potential of a positive function \(f\).
According to the different forms of Wolff-type integral system, the authors discuss the properties of the positive solutions in two cases: \(p_i<0\) and \(p_i>0\). A special iteration scheme in integral form (as well as in differential form) is applied. Using the Wolff potential integral estimates the asymptotic rates and the integrability of positive solutions are obtained.

MSC:

45G15 Systems of nonlinear integral equations
45M20 Positive solutions of integral equations
45M05 Asymptotics of solutions to integral equations
Full Text: DOI

References:

[1] Chen, W.; Li, C., Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst, 30, 1083-1093 (2011) · Zbl 1221.45006
[2] Chen, W.; Li, C.; Ou, B., Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30, 59-65 (2005) · Zbl 1073.45005 · doi:10.1081/PDE-200044445
[3] Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Comm. Pure Appl. Math, 59, 330-343 (2006) · Zbl 1093.45001 · doi:10.1002/cpa.20116
[4] Dou, J.; Zhu, M., Reversed Hardy-Littlewood-Sobolev inequality, Internat. Math. Res. Notices, 19, 9696-9726 (2015) · Zbl 1329.26033 · doi:10.1093/imrn/rnu241
[5] Hedberg, L. I.; Wolff, T., Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenobel, 33, 161-187 (1983) · Zbl 0508.31008 · doi:10.5802/aif.944
[6] Jin, C.; Li, C., Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differential Equations, 26, 447-457 (2006) · Zbl 1113.45006 · doi:10.1007/s00526-006-0013-5
[7] Kilpelaiinen, T.; Malý, J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math, 172, 137-161 (1994) · Zbl 0820.35063 · doi:10.1007/BF02392793
[8] Labutin, D., Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J, 111, 1-49 (2002) · Zbl 1100.35036 · doi:10.1215/S0012-7094-02-11111-9
[9] Lei, Y., On the integral systems with negative exponents, Discrete Contin. Dyn. Syst, 35, 1039-1057 (2015) · Zbl 1304.45006
[10] Lei, Y., Wolff type potential estimates and application to nonlinear equations with negative exponents, Discrete Contin. Dyn. Syst, 35, 2067-2078 (2015) · Zbl 1307.45005
[11] Lei, Y., Qualitative properties of positive solutions of quasilinear equations with Hardy terms, Forum Math, 29, 1177-1198 (2017) · Zbl 1381.35052 · doi:10.1515/forum-2014-0173
[12] Lei, Y.; Li, C., Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst, 36, 3277-3315 (2016) · Zbl 1336.35092
[13] Lei, Y.; Li, C.; Ma, C., Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45, 43-61 (2012) · Zbl 1257.45005 · doi:10.1007/s00526-011-0450-7
[14] Lei, Y.; Ma, C., Radial symmetry and decay rates of positive solutions of a Wolff type integral system, Proc. Amer. Math. Soc, 140, 541-551 (2012) · Zbl 1241.45005 · doi:10.1090/S0002-9939-2011-11401-1
[15] Li, Y.-Y., Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc, 6, 153-180 (2004) · Zbl 1075.45006 · doi:10.4171/JEMS/6
[16] Lieb, E., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math, 118, 349-374 (1983) · Zbl 0527.42011 · doi:10.2307/2007032
[17] Liu, C.; Qiao, S., Symmetry and monotonicity for a system of integral equations, Commun. Pure Appl. Anal, 8, 1925-1932 (2009) · Zbl 1185.45011 · doi:10.3934/cpaa.2009.8.1925
[18] Liu, X.; Lei, Y., On the existence for an integral system including m equations, Taiwanese J. Math, 24, 421-437 (2020) · Zbl 1448.45006 · doi:10.11650/tjm/190406
[19] Lü, Y.; Zhou, C., Symmetry for an integral system with general nonlinear, Discrete Contin. Dyn. Syst, 39, 1533-1543 (2019) · Zbl 1417.45003
[20] Ma, C.; Chen, W.; Li, C., Regularity of solutions for an integral system of Wolff type, Adv. Math, 226, 2676-2699 (2011) · Zbl 1209.45006 · doi:10.1016/j.aim.2010.07.020
[21] Ngo, Q.; Nguyen, V., Sharp reversed Hardy-Littlewood-Sobolev inequality on R^n, Israel J. Math, 220, 1-35 (2017) · Zbl 1379.26027 · doi:10.1007/s11856-017-1515-x
[22] Phuc, N.; Verbitsky, I., Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math, 168, 859-914 (2008) · Zbl 1175.31010 · doi:10.4007/annals.2008.168.859
[23] Sun, S.; Lei, Y., Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials, J. Funct. Anal, 263, 3857-3882 (2012) · Zbl 1260.45004 · doi:10.1016/j.jfa.2012.09.012
[24] Xu, X., Exact solution of nonlinear conformally invarient integral equations in R^3, Adv. Math, 194, 485-503 (2005) · Zbl 1073.45003 · doi:10.1016/j.aim.2004.07.004
[25] Xu, X., Uniqueness theorem for integral equations and its application, J. Funct. Anal, 247, 95-109 (2007) · Zbl 1153.45005 · doi:10.1016/j.jfa.2007.03.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.