×

Periodic solutions of planar systems with two delays. (English) Zbl 0946.34062

Consider the system of two differential-delay equations with two delays \[ dx_1 /dt =-a_0 x_1 (t) +a_1 F_1 (x_1 (t - \tau_1),\;x_2(t-\tau_2)),\tag{*} \]
\[ dx_2 /dt =- b_0 x_2 (t) + b_1 F_2 (x_1 (t- \tau_1), \;x_2 (t - \tau_2)) \] under the following assumptions:
(i) \(F_j \in C^3 (\mathbb{R}^2 , \mathbb{R}^2), F_j (0,0)=0, \;\partial F_j / \partial x_j (0,0)=0\) for \(j=1,2\).
(ii) \( \partial F_1 / \partial x_2 (0,0) \neq 0, \;\partial F_2 / \partial x_1 (0,0) \neq 0, \;x_2 F_1 (x_1 ,x_2) \neq 0\) for \( x_2 \neq 0, \;x_1 F_2 (x_1 ,x_2) \neq 0\) for \(x_1 \neq 0\).
(iii) For \( j=0,1, a_j\) and \(b_j\) are constants where \(a_0 > 0, \;b_0 > 0.\)
The authors use the method of degree theory to study the global existence of periodic solutions to \((*)\). To this purpose, they apply a global Hopf bifurcation result to \((*)\) with \(\alpha =-a_1 b_1 \;\partial F_1 / \partial x_2 (0,0) \;\partial F_2 / \partial x_1 (0,0)\) as bifurcation parameter. As an example they consider a neural network without self-connection.

MSC:

34K13 Periodic solutions to functional-differential equations
34K18 Bifurcation theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] DOI: 10.1137/0520019 · Zbl 0676.34043 · doi:10.1137/0520019
[2] DOI: 10.1016/0022-247X(82)90243-8 · Zbl 0492.34064 · doi:10.1016/0022-247X(82)90243-8
[3] DOI: 10.1016/0022-0396(77)90087-0 · Zbl 0365.34078 · doi:10.1016/0022-0396(77)90087-0
[4] DOI: 10.1016/0022-247X(62)90017-3 · Zbl 0106.29504 · doi:10.1016/0022-247X(62)90017-3
[5] Huang, Differential equations and control theory pp 107– (1996)
[6] DOI: 10.1016/0022-247X(79)90068-4 · Zbl 0426.34059 · doi:10.1016/0022-247X(79)90068-4
[7] Hale, Introduction to functional differential equations (1993) · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[8] DOI: 10.1007/BF00289359 · Zbl 0426.34058 · doi:10.1007/BF00289359
[9] DOI: 10.1016/0022-0396(69)90119-3 · Zbl 0175.38503 · doi:10.1016/0022-0396(69)90119-3
[10] DOI: 10.1016/0362-546X(95)00230-S · Zbl 0872.34047 · doi:10.1016/0362-546X(95)00230-S
[11] DOI: 10.1007/978-1-4612-4050-1 · doi:10.1007/978-1-4612-4050-1
[12] DOI: 10.1016/S0167-2789(99)00009-3 · Zbl 1066.34511 · doi:10.1016/S0167-2789(99)00009-3
[13] Táboas, Proc. R. Soc. Edinb. A 116 pp 85– (1990) · Zbl 0719.34125 · doi:10.1017/S0308210500031395
[14] DOI: 10.1016/0022-0396(78)90041-4 · Zbl 0369.34020 · doi:10.1016/0022-0396(78)90041-4
[15] DOI: 10.1016/0022-247X(78)90250-0 · Zbl 0397.34091 · doi:10.1016/0022-247X(78)90250-0
[16] DOI: 10.1016/0022-0396(74)90084-9 · Zbl 0295.34055 · doi:10.1016/0022-0396(74)90084-9
[17] DOI: 10.1006/jdeq.1996.0075 · Zbl 0849.34053 · doi:10.1006/jdeq.1996.0075
[18] DOI: 10.1016/0022-0396(73)90053-3 · Zbl 0311.34087 · doi:10.1016/0022-0396(73)90053-3
[19] DOI: 10.1016/S0167-2789(96)00215-1 · Zbl 0887.34069 · doi:10.1016/S0167-2789(96)00215-1
[20] Nussbaum, Mem. Am. Math. Soc. 16 pp 1– (1978)
[21] DOI: 10.1007/BF02417109 · Zbl 0323.34061 · doi:10.1007/BF02417109
[22] DOI: 10.1016/0167-2789(95)00203-0 · Zbl 0883.68108 · doi:10.1016/0167-2789(95)00203-0
[23] DOI: 10.1006/jmaa.1996.0089 · Zbl 0851.34074 · doi:10.1006/jmaa.1996.0089
[24] DOI: 10.1016/0022-0396(92)90094-4 · Zbl 0765.34023 · doi:10.1016/0022-0396(92)90094-4
[25] Dieudonné, Foundations of modern analysis (1960)
[26] DOI: 10.1007/BF01790539 · Zbl 0617.34071 · doi:10.1007/BF01790539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.