×

Stable broken \(H^1\) and \(H(\operatorname{div})\) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. (English) Zbl 1434.65253

Summary: We study extensions of piecewise polynomial data prescribed on faces and possibly in elements of a patch of simplices sharing a vertex. In the \(H^1\) setting, we look for functions whose jumps across the faces are prescribed, whereas in the \(\boldsymbol{H}(\operatorname{div})\) setting, the normal component jumps and the piecewise divergence are prescribed. We show stability in the sense that the minimizers over piecewise polynomial spaces of the same degree as the data are subordinate in the broken energy norm to the minimizers over the whole broken \(H^1\) and \(\boldsymbol{H}(\operatorname{div})\) spaces. Our proofs are constructive and yield constants independent of the polynomial degree. One particular application of these results is in a posteriori error analysis, where the present results justify polynomial-degree-robust efficiency of potential and flux reconstructions.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Braess, Dietrich; Pillwein, Veronika; Sch\"{o}berl, Joachim, Equilibrated residual error estimates are \(p\)-robust, Comput. Methods Appl. Mech. Engrg., 198, 13-14, 1189-1197 (2009) · Zbl 1157.65483 · doi:10.1016/j.cma.2008.12.010
[2] Braess, Dietrich; Sch\"{o}berl, Joachim, Equilibrated residual error estimator for edge elements, Math. Comp., 77, 262, 651-672 (2008) · Zbl 1135.65041 · doi:10.1090/S0025-5718-07-02080-7
[3] Brenner, Susanne C., Poincar\'{e}-Friedrichs inequalities for piecewise \(H^1\) functions, SIAM J. Numer. Anal., 41, 1, 306-324 (2003) · Zbl 1045.65100 · doi:10.1137/S0036142902401311
[4] Bruggesser, H.; Mani, P., Shellable decompositions of cells and spheres, Math. Scand., 29, 197-205 (1972) (1971) · Zbl 0251.52013 · doi:10.7146/math.scand.a-11045
[5] Canc\`“es, Eric; Dusson, Genevi\`eve; Maday, Yvon; Stamm, Benjamin; Vohral\'”{\i}k, Martin, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations, SIAM J. Numer. Anal., 55, 5, 2228-2254 (2017) · Zbl 1516.65120 · doi:10.1137/15M1038633
[6] Canc\`“es, Eric; Dusson, Genevi\`eve; Maday, Yvon; Stamm, Benjamin; Vohral\'”{\i}k, Martin, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework, Numer. Math., 140, 4, 1033-1079 (2018) · Zbl 1402.65137 · doi:10.1007/s00211-018-0984-0
[7] Carstensen, C.; Merdon, C., Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem, J. Comput. Appl. Math., 249, 74-94 (2013) · Zbl 1285.65079 · doi:10.1016/j.cam.2012.12.021
[8] Cerm\'{a}k, Martin; Hecht, Fr\'{e}d\'{e}ric; Tang, Zuqi; Vohral\'{\i}k, Martin, Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem, Numer. Math., 138, 4, 1027-1065 (2018) · Zbl 1448.65221 · doi:10.1007/s00211-017-0925-3
[9] Ciarlet, Patrick, Jr.; Vohral\'{\i}k, Martin, Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients, ESAIM Math. Model. Numer. Anal., 52, 5, 2037-2064 (2018) · Zbl 1417.65187 · doi:10.1051/m2an/2018034
[10] Costabel, Martin; McIntosh, Alan, On Bogovski\u{\i} and regularized Poincar\'{e} integral operators for de Rham complexes on Lipschitz domains, Math. Z., 265, 2, 297-320 (2010) · Zbl 1197.35338 · doi:10.1007/s00209-009-0517-8
[11] Demkowicz, Leszek; Gopalakrishnan, Jayadeep; Sch\"{o}berl, Joachim, Polynomial extension operators. I, SIAM J. Numer. Anal., 46, 6, 3006-3031 (2008) · Zbl 1189.46025 · doi:10.1137/070698786
[12] Demkowicz, Leszek; Gopalakrishnan, Jayadeep; Sch\"{o}berl, Joachim, Polynomial extension operators. II, SIAM J. Numer. Anal., 47, 5, 3293-3324 (2009) · Zbl 1208.46030 · doi:10.1137/070698798
[13] Demkowicz, L.; Gopalakrishnan, J.; Sch\"{o}berl, J., Polynomial extension operators. Part III, Math. Comp., 81, 279, 1289-1326 (2012) · Zbl 1252.46022 · doi:10.1090/S0025-5718-2011-02536-6
[14] Destuynder, Philippe; M\'{e}tivet, Brigitte, Explicit error bounds in a conforming finite element method, Math. Comp., 68, 228, 1379-1396 (1999) · Zbl 0929.65095 · doi:10.1090/S0025-5718-99-01093-5
[15] Di Pietro, Daniele Antonio; Ern, Alexandre, Mathematical Aspects of Discontinuous Galerkin Methods, Math\'{e}matiques & Applications (Berlin) [Mathematics & Applications] 69, xviii+384 pp. (2012), Springer, Heidelberg · Zbl 1231.65209 · doi:10.1007/978-3-642-22980-0
[16] Dolej\v{s}\'{\i}, V\'{\i}t; Ern, Alexandre; Vohral\'{\i}k, Martin, \(hp\)-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems, SIAM J. Sci. Comput., 38, 5, A3220-A3246 (2016) · Zbl 1351.65082 · doi:10.1137/15M1026687
[17] D\"{o}rsek, Philipp; Melenk, Jens M., Symmetry-free, \(p\)-robust equilibrated error indication for the \(hp\)-version of the FEM in nearly incompressible linear elasticity, Comput. Methods Appl. Math., 13, 3, 291-304 (2013) · Zbl 1357.74060 · doi:10.1515/cmam-2013-0007
[18] Ern, Alexandre; Smears, Iain; Vohral\'{\i}k, Martin, Discrete \(p\)-robust \(H({\operatorname{div}})\)-liftings and a posteriori estimates for elliptic problems with \(H^{-1}\) source terms, Calcolo, 54, 3, 1009-1025 (2017) · Zbl 1378.65173 · doi:10.1007/s10092-017-0217-4
[19] Ern, Alexandre; Smears, Iain; Vohral\'{\i}k, Martin, Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal., 55, 6, 2811-2834 (2017) · Zbl 1378.65165 · doi:10.1137/16M1097626
[20] Ern, Alexandre; Smears, Iain; Vohral\'{\i}k, Martin, Equilibrated flux {\it a posteriori} error estimates in \(L^2(H^1)\)-norms for high-order discretizations of parabolic problems, IMA J. Numer. Anal., 39, 3, 1158-1179 (2019) · Zbl 1467.65092 · doi:10.1093/imanum/dry035
[21] Ern, Alexandre; Vohral\'{\i}k, Martin, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53, 2, 1058-1081 (2015) · Zbl 1312.76026 · doi:10.1137/130950100
[22] Tsai, Mu-Tsun; West, Douglas B., A new proof of 3-colorability of Eulerian triangulations, Ars Math. Contemp., 4, 1, 73-77 (2011) · Zbl 1236.05070 · doi:10.26493/1855-3974.193.8e7
[23] Vohral\'{\i}k, Martin, On the discrete Poincar\'{e}-Friedrichs inequalities for nonconforming approximations of the Sobolev space \(H^1\), Numer. Funct. Anal. Optim., 26, 7-8, 925-952 (2005) · Zbl 1089.65124 · doi:10.1080/01630560500444533
[24] Ziegler, G\"{u}nter M., Lectures on Polytopes, Graduate Texts in Mathematics 152, x+370 pp. (1995), Springer-Verlag, New York · Zbl 0823.52002 · doi:10.1007/978-1-4613-8431-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.