×

Some non-abelian phase spaces in low dimensions. (English) Zbl 1151.17309

Summary: A non-abelian phase space, or a phase space of a Lie algebra, is a generalization of the usual (abelian) phase space of a vector space. It corresponds to a para-Kähler structure in geometry. Its structure can be interpreted in terms of left-symmetric algebras. In particular, a solution of an algebraic equation in a left-symmetric algebra which is an analogue of classical Yang-Baxter equation in a Lie algebra can induce a phase space. In this paper, we find that such phase spaces have a symplectically isomorphic property. We also give all such phase spaces in dimension 4 and some examples in dimension 6. These examples can be a guide for a further development.

MSC:

17B81 Applications of Lie (super)algebras to physics, etc.
53D05 Symplectic manifolds (general theory)
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] Andrada, A.; Salamon, S., Complex product structure on Lie algebras, Forum Math., 17, 261-295 (2005) · Zbl 1094.17006
[2] Auslander, L., Simply transitive groups of affine motions, Amer. J. Math., 99, 809-826 (1977) · Zbl 0357.22006
[3] Bai, C. M., Left-symmetric algebras from linear functions, J. Algebra, 281, 651-665 (2004) · Zbl 1117.17001
[4] Bai, C. M., A further study on non-abelian phase spaces: Left-symmetric algebraic approach and related geometry, Rev. Math. Phys., 18, 545-564 (2006) · Zbl 1110.17008
[5] Bai, C. M., Left-symmetric bialgebras and an analogue of classical Yang-Baxter equation, Commun. Contemp. Math., 10, 221-260 (2008) · Zbl 1173.17025
[6] C.M. Bai, Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras, Commun. Algebra (in press). arXiv:0710.2609; C.M. Bai, Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras, Commun. Algebra (in press). arXiv:0710.2609
[7] Bajo, I.; Benayadi, S.; Medina, A., Symplectic structures on quadratic Lie algebras, J. Algebra, 316, 174-188 (2007) · Zbl 1124.17005
[8] Bakalov, B.; Kac, V., Field algebras, Int. Math. Res. Not., 123-159 (2003) · Zbl 1032.17045
[9] Balinskii, A. A.; Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Soviet Math. Dokl., 32, 228-231 (1985) · Zbl 0606.58018
[10] Belavin, A. A.; Drinfel’d, V. G., Solutions of classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl., 16, 159-180 (1982) · Zbl 0504.22016
[11] Bordemann, M., Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys., 135, 201-216 (1990) · Zbl 0714.58025
[12] Bordemann, M.; Medina, A.; Ouadfel, A., Le groupe affine comme variété symplectique, Tohoku Math. J., 45, 2, 423-436 (1993) · Zbl 0784.53031
[13] Burde, D., Simple left-symmetric algebras with solvable Lie algebra, Manuscripta Math., 95, 397-411 (1998) · Zbl 0907.17008
[14] Chapoton, F.; Livernet, M., Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not., 395-408 (2001) · Zbl 1053.17001
[15] Chu, B. Y., Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197, 145-159 (1974) · Zbl 0261.53039
[16] Connes, A.; Kreimer, D., Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199, 203-242 (1998) · Zbl 0932.16038
[17] Dardie, J. M.; Medina, A., Double extension symplectique d’un groupe de Lie symplectique, Adv. Math., 117, 208-227 (1996) · Zbl 0843.58045
[18] Dardie, J. M.; Medina, A., Algebres de Lie kähleriennes et double extension, J. Algebra, 185, 774-795 (1995) · Zbl 0866.17006
[19] Diatta, A.; Medina, A., Classical Yang-Baxter equation and left-invariant affine geometry on Lie groups, Manuscripta Math., 114, 477-486 (2004) · Zbl 1078.53082
[20] Drinfel’d, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. Dokl., 27, 68-71 (1983) · Zbl 0526.58017
[21] Etingof, P.; Soloviev, A., Quantization of geometric classical \(r\)-matrix, Math. Res. Lett., 6, 223-228 (1999) · Zbl 0999.17025
[22] Gel’fand, I. M.; Ya, I., Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl., 13, 248-262 (1979) · Zbl 0437.58009
[23] Gerstenhaber, M., The cohomology structure of an associative ring, Ann. Math., 78, 267-288 (1963) · Zbl 0131.27302
[24] Golubschik, I. Z.; Sokolov, V. V., Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys., 7, 184-197 (2000) · Zbl 1119.37318
[25] Hano, J. I., On kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math., 79, 885-900 (1957) · Zbl 0096.16203
[26] Jacobson, N., Lie Algebras (1962), Interscience: Interscience New York · JFM 61.1044.02
[27] Kaneyuki, S., Homogeneous symplectic manifolds and dipolarizations in Lie algebras, Tokyo J. Math., 15, 313-325 (1992) · Zbl 0781.53027
[28] Khakimdjanov, Y.; Goze, M.; Medina, A., Symplectic or contact structures on Lie groups · Zbl 1053.53056
[29] Kim, H., Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geom., 24, 373-394 (1986) · Zbl 0591.53045
[30] Kupershmidt, B. A., Non-abelian phase spaces, J. Phys. A: Math. Gen., 27, 2801-2810 (1994) · Zbl 0842.58030
[31] Kupershmidt, B. A., On the nature of the Virasoro algebra, J. Nonlinear Math. Phys., 6, 222-245 (1999) · Zbl 1015.17027
[32] Kupershmidt, B. A., What a classical \(r\)-matrix really is, J. Nonlinear Math. Phys., 6, 448-488 (1999) · Zbl 1015.17015
[33] Libermann, P., Sur le probleme d’equivalence de certaines structures infinitesimals, Ann. Mat. Pura Appl., 36, 27-120 (1954) · Zbl 0056.15401
[34] Lichnerowicz, A.; Medina, A., On Lie groups with left invariant symplectic or kahlerian structures, Lett. Math. Phys., 16, 225-235 (1988) · Zbl 0665.53046
[35] McDuff, D.; Salamon, D., Introduction to Symplectic Topology (1998), Clarendon Press: Clarendon Press Oxford · Zbl 1066.53137
[36] Medina, A., Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom., 16, 445-474 (1981) · Zbl 0486.53026
[37] Medina, A.; Revoy, Ph., Groupes de Lie à structure symplectique invariante, (Dazord, P.; Weinstein, A., Symplectic Geometry, Groupoids, and Integrable Systems, Séminaire Sud-Rhodanien de Géométrie. Symplectic Geometry, Groupoids, and Integrable Systems, Séminaire Sud-Rhodanien de Géométrie, Math. Sci. Res. Inst. Publ. (1991), Springer-Verlag), 247-266 · Zbl 0754.53027
[38] A. Medina, Ph. Revoy, Groupes de Lie Poisson et double extension, in: Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1990-1991, Montpellier, 1990-1991, vol. iv, Univ. Montpellier II, Montpellier, 1992, pp. 87-105; A. Medina, Ph. Revoy, Groupes de Lie Poisson et double extension, in: Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1990-1991, Montpellier, 1990-1991, vol. iv, Univ. Montpellier II, Montpellier, 1992, pp. 87-105 · Zbl 0765.22003
[39] Medina, A.; Revoy, Ph., Lattices in symplectic Lie groups, J. Lie Theory, 17, 27-39 (2007) · Zbl 1175.22011
[40] Semonov-Tian-Shansky, M. A., What is a classical R-matrix?, Funct. Anal. Appl., 17, 259-272 (1983) · Zbl 0535.58031
[41] Shima, H., Homogeneous Hessian manifolds, Ann. Inst. Fourier, 30, 91-128 (1980) · Zbl 0424.53023
[42] Svinolupov, S. I.; Sokolov, V. V., Vector-matrix generalizations of classical integrable equations, Theoret. Math. Phys., 100, 959-962 (1994) · Zbl 0875.35121
[43] Vinberg, E. B., Convex homogeneous cones, Transl. Moscow Math. Soc., 12, 340-403 (1963) · Zbl 0138.43301
[44] Zel’manov, E. I., On a class of local translation invariant Lie algebras, Soviet Math. Dokl., 35, 216-218 (1987) · Zbl 0629.17002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.