×

General \(N\)th-order differential spectral problem: general structure of the integrable equations, nonuniqueness of recursion operator and gauge invariance. (English) Zbl 0552.35074

The authors consider the \(N\)th order spectral problem of Gel’fand, Dikij, Zakharov and Shabat \[ (\partial^ N+V_{N-1}(x,t)d^{N-1}+...+V_ 1\partial +V_ 0)\psi =\Lambda^ N\psi. \tag{1.1} \] The spectral problem is invariant under the transformation \(\psi (x,t;\lambda)\to \psi'(x,t;\lambda)=g(x,t)\psi (x,t;\lambda),\) where \(g(x,t)\) is any smooth function such that \(\lim_{| x| \to \infty}g(x,t)=1,\) \[ V_ k(x,t)\to V'\!_ k(x,t)=g(x,t)\sum^{N-k}_{n=0}C^ k_{k+n}\cdot V_{k+n}(x,t)\partial^ n(1/g(x,t)). \] These transformations form an infinite dimensional abelian group. There exist \(N-1\) independent invariants \(W_ 0(V_ 0...V_{N-1}),...,W_{N-2}(V_ 0,...,V_{N-1})\) under the action of this group. For example, if \(N=2\), let \(V_{0\infty}=V_{1\infty}=0\). Then \(W_ 0=V_ 0-()\partial V_ 1- (1/4)V^ 2_ 1\) is an invariant and \(V'\!_ 0=(1/2)\partial V_ 1- (1/4)V^ 2_ 1,\) which is the Miura transformation.
The authors rewrite the equation (1.1) in the matrix Frobenius form \(\partial F/\partial x=(A+P(x,t))F,\) where \(F=(\psi,\partial \psi,...,\partial^{N-1}\psi)\). A standard scattering matrix is introduced \(S(\Lambda,t): F^+(x,t,\lambda)=F^-(x,t,\lambda)\cdot S(\Lambda,t).\) It is shown that the scattering matrix is gauge invariant. Using the AKNS technique the authors establish the relations between the evolution equations for the potentials and the evolution equation for the scattering matrix.
A general form of integrable equations is derived and several gauge invariance properties are established. The role played by the so called recursion operator turns out to be central in this development. The authors prove that the general form of the evolution equation derived from (1.1) may be represented as an \(N-1\)-dimensional Hamiltonian system, after deleting the pure gauge degrees of freedom. Some interesting examples conclude this paper.
Reviewer: V. Komkov

MSC:

35Q40 PDEs in connection with quantum mechanics
35P25 Scattering theory for PDEs
35R30 Inverse problems for PDEs
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Zakharov, V. E.; Manakov, S. V.; Novikov, S. P.; Pitaevski, L. P., (Theory of Solitons. The Method of Inverse Problem (1980), Nauka: Nauka Moscow) · Zbl 0598.35003
[2] (Bullough, R.; Caudrey, P., “Solitons,” Topics in Curent Physics, Vol. 17 (1980), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 0428.00010
[3] Ablowitz, M. J.; Segur, H., (Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia) · Zbl 0472.35002
[4] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068
[5] Flaschka, H.; Newell, A. C., Lecture Notes in Phys., 38, 355-440 (1975)
[6] Newell, A. C., (Proc. Roy. Soc. London Ser. A, 365 (1979)), 284-311 · Zbl 0403.35048
[7] Kulish, P. P., Notes of LOMI Scientific Seminars, 96, 105-112 (1980), (in Russian) · Zbl 0474.35077
[8] Konopelchenko, B. G., Phys. Lett. B, 108, 26-32 (1982)
[9] Konopelchenko, B. G., J. Phys. A, 14, 3125-3145 (1981) · Zbl 0482.35006
[10] Gerdjikov, V. S.; Ivanov, M. I.; Kulish, P. P., Teor. Mat. Fyz., 44, 342 (1980) · Zbl 0439.35055
[11] Gerdjikov, V. S.; Kulish, P. P., Physica D, 3, 549-564 (1981) · Zbl 1194.35365
[12] Konopelchenko, B. G.; Formusatic, I. B., J. Phys. A, 15, 2017-2040 (1982) · Zbl 0495.35062
[13] Konopelchenko, B. G., Functional Anal. Appl., 16, 3, 63-65 (1982) · Zbl 0507.35082
[14] V. G. Dubrovsky and B. G. Konopelchenko; V. G. Dubrovsky and B. G. Konopelchenko
[15] Zakharov, V. E.; Shabat, A. B., Functional Anal. Appl., 3, 43 (1974)
[16] Gelfand, I. M.; Dikij, L. A., Functional Anal. Appl., 12, 2, 8-23 (1978) · Zbl 0388.58009
[17] Manin, Yu. I., J. Soviet Math., 11, 1-122 (1979) · Zbl 0419.35001
[18] Adler, M., Invent. Math., 50, 219-248 (1979) · Zbl 0393.35058
[19] Lebedev, D. R.; Manin, Yu. I., Functional Anal. Appl., 13, 4, 40-46 (1979) · Zbl 0441.58007
[20] Fordy, A. P.; Gibbons, J., J. Math. Phys., 22, 1170-1175 (1981) · Zbl 0476.35068
[21] Kupershmidt, B. A.; Wilson, G., Comm. Math. Phys., 81, 189 (1981) · Zbl 0487.35078
[22] Wilson, G., Quart. J. Math. Oxford Ser., 32, 2, 491 (1981) · Zbl 0477.35079
[23] Drinfeld, V. G.; Sokolov, V. V., Dokl. Akad. Nauk SSSR, 258, 11 (1981)
[24] Zakharov, V. E.; Shabat, A. B., Functional Anal. Appl., 13, 3, 13 (1979)
[25] Zakharov, V. E.; Mikhailov, A. V., Z.E.T.F., 74, 1953 (1978), (in Russian)
[26] Konopelchenko, B. G., Phys. Lett. A, 92, 323 (1982)
[27] Miura, R. M., J. Math. Phys., 9, 1202 (1967)
[28] Magri, F., Lecture Notes in Physics, 120, 233-263 (1980)
[29] Kulish, P. P.; Reiman, A. G., Notes of LOMI Scientific Seminars, 77, 134-147 (1978) · Zbl 0427.35064
[30] Reiman, A. G.; Semenov-Tyan-Shansky, M. A., Functional Anal. Appl., 14, 2, 77-78 (1980) · Zbl 0443.58014
[31] Gelfand, I. M.; Dorphman, I. Ya., Functional Anal. Appl., 15, 23-40 (1980) · Zbl 0478.58013
[32] Zakharov, V. E., Z.E.T.F., 65, 219 (1973)
[33] Kaup, D. J., Stud. Appl. Math., 62, 189-216 (1980) · Zbl 0431.35073
[34] Sawada, K.; Kotera, T., Prog. Theoret. Phys., 51, 1355 (1974) · Zbl 1125.35400
[35] Dodd, R. K.; Gibbon, J. D., (Proc. Roy. Soc. London Ser. A, 358 (1977)), 287 · Zbl 0376.35009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.