×

Machine learning aided uncertainty quantification for engineering structures involving material-geometric randomness and data imperfection. (English) Zbl 1539.65150

Summary: In real-world engineering, uncertainty is ubiquitous within material properties, structural geometry, load conditions, and the like. These uncertainties have substantial impacts on the estimation of structural performance. Furthermore, information or datasets in real life commonly contain imperfections, e.g., noise, outliers, or missing data. To quantify these impacts induced by uncertainties on structural behaviours and reduce the effects of data imperfections simultaneously, a machine learning-aided stochastic analysis framework is proposed. A novel supervised machine learning technique, namely the Capped Extended Support Vector Regression (CX-SVR) technique, is developed to effectively suppress the effects of outliers and noise in datasets. Its inherent convexity in optimization and capped strategy theoretically supports the accuracy of CX-SVR, especially in handling datasets with imperfections. Once the effective surrogate model is established, subsequent analyses, like sampling-based methods, can circumvent the cumbersome physical model, which is potentially the nest of computational burden and errors in engineering applications. The high robustness of the proposed approach can be summarized in four main aspects: unrestrictive selection of the system inputs and their statistical information, ‘perfect’ or ‘imperfect’ data, enough statistical information (including statistical moments, probability density functions, and cumulative distribution functions) of the system outputs, and physical problems from various engineering fields.

MSC:

65C99 Probabilistic methods, stochastic differential equations
68T05 Learning and adaptive systems in artificial intelligence
74S05 Finite element methods applied to problems in solid mechanics

Software:

COMSOL
Full Text: DOI

References:

[1] Olugbade, S.; Ojo, S.; Imoize, A. L.; Isabona, J.; Alaba, M. O., A review of artificial intelligence and machine learning for incident detectors in road transport systems, Math. Comput. Appl., 27, 5, 77, 2022
[2] Tseng, M. L.; Tran, T. P.T.; Ha, H. M.; Bui, T. D.; Lim, M. K., Sustainable industrial and operation engineering trends and challenges toward industry 4.0: a data driven analysis, J. Ind. Prod. Eng., 38, 8, 581-598, 2021
[3] Aithal, P. S., Information communication & computation technology (ICCT) as a strategic tool for industry sectors, Int. J. Appl. Eng. Manag. Lett., 3, 2, 65-80, 2019, (IJAEML)
[4] Huang, Y.; Shao, C.; Wu, B.; Beck, J. L.; Li, H., State-of-the-art review on Bayesian inference in structural system identification and damage assessment, Adv. Struct. Eng., 22, 6, 1329-1351, 2019
[5] Liu, Q.; Dai, Y.; Wu, X.; Han, X.; Ouyang, H.; Li, Z., A non-probabilistic uncertainty analysis method based on ellipsoid possibility model and its applications in multi-field coupling systems, Comput. Methods Appl. Mech. Eng., 385, Article 114051 pp., 2021 · Zbl 1502.65005
[6] Wu, D.; Wang, Q.; Liu, A.; Yu, Y.; Zhang, Z.; Gao, W., Robust free vibration analysis of functionally graded structures with interval uncertainties, Compos. Part B Eng., 159, 132-145, 2019
[7] Wang, Q.; Li, Q.; Wu, D.; Yu, Y.; Tin-Loi, F.; Ma, J.; Gao, W., Machine learning aided static structural reliability analysis for functionally graded frame structures, Appl. Math. Model, 78, 792-815, 2020 · Zbl 1481.74127
[8] Pearson, R. K., Mining imperfect data: with examples in R and python, Soc. Ind. Appl. Math., 2020 · Zbl 1459.62006
[9] Sharma, A. B.; Golubchik, L.; Govindan, R., Sensor faults: detection methods and prevalence in real-world datasets, ACM Trans. Sens. Netw., 6, 3, 1-39, 2010, (TOSN)
[10] Graham, J. W., Missing data analysis: making it work in the real world, Annu. Rev. Psychol., 60, 549-576, 2009
[11] Bae, H. R.; Grandhi, R. V.; Canfield, R. A., An approximation approach for uncertainty quantification using evidence theory, Reliab. Eng. Syst. Saf., 86, 3, 215-225, 2004
[12] Smith, R. C., Uncertainty Quantification: Theory, Implementation, and Applications, 12, 2013, Siam
[13] Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Nahavandi, S., A review of uncertainty quantification in deep learning: techniques, applications and challenges, Inf. Fusion, 76, 243-297, 2021
[14] Haldar, A.; Mahadevan, S., Reliability Assessment Using Stochastic Finite Element Analysis, 2000, John Wiley & Sons
[15] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach, 2003, Courier Corporation
[16] Van den Nieuwenhof, B.; Coyette, J. P., Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties, Comput. Methods Appl. Mech. Eng., 192, 33-34, 3705-3729, 2003 · Zbl 1054.74061
[17] Stefanou, G., The stochastic finite element method: past, present and future, Comput. Methods Appl. Mech. Eng., 198, 9-12, 1031-1051, 2009 · Zbl 1229.74140
[18] Stefanou, G., Response variability of cylindrical shells with stochastic non-Gaussian material and geometric properties, Eng. Struct., 33, 9, 2621-2627, 2011
[19] Zheng, Z.; Dai, H.; Beer, M., Efficient structural reliability analysis via a weak-intrusive stochastic finite element method, Probab. Eng. Mech., Article 103414 pp., 2023
[20] Sepahvand, K., Stochastic finite element method for random harmonic analysis of composite plates with uncertain modal damping parameters, J. Sound Vib., 400, 1-12, 2017
[21] Chen, X.; Liu, J.; Xie, N.; Sun, H., Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method, Sci. Cold Arid Reg., 7, 4, 0354-0364, 2015
[22] Sudret, B., Polynomial chaos expansions and stochastic finite element methods, Risk Reliab. Geotech. Eng., 265-300, 2014
[23] Mooney, C. Z., Monte Carlo Simulation (No. 116), 1997, Sage · Zbl 0914.65148
[24] Zio, E., Monte Carlo Simulation: The Method, 19-58, 2013, Springer London
[25] Liu, W. K.; Belytschko, T.; Mani, A., Random field finite elements, Int. J. Numer. Methods Eng., 23, 10, 1831-1845, 1986 · Zbl 0597.73075
[26] Nayfeh, A. H., Perturbation Methods, 2008, John Wiley & Sons
[27] Ghanem, R. G.; Spanos, P. D., Spectral stochastic finite-element formulation for reliability analysis, J. Eng. Mech., 117, 10, 2351-2372, 1991
[28] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approachs, 2004, Courier Corporation
[29] Arregui-Mena, J. D.; Margetts, L.; Mummery, P. M., Practical application of the stochastic finite element method, Arch. Comput. Methods Eng., 23, 171-190, 2016 · Zbl 1348.65160
[30] Rong, B.; Rui, X.; Tao, L., Perturbation finite element transfer matrix method for random eigenvalue problems of uncertain structures, J. Appl. Mech., 79, 2, 2012
[31] Rahman, S.; Rao, B., A perturbation method for stochastic meshless analysis in elastostatics, Int. J. Numer. Methods Eng., 50, 8, 1969-1991, 2001 · Zbl 1168.74471
[32] Çavdar, Ö., Bayraktar, A., Çavdar, A., & Adanur, S., 2008, Perturbation based stochastic finite element analysis of the structural systems with composite sections under earthquake forces.
[33] Kaminski, M., The Stochastic Perturbation Method for Computational Mechanics, 2013, John Wiley & Sons · Zbl 1275.74002
[34] Do, D. M.; Gao, W.; Song, C., Stochastic finite element analysis of structures in the presence of multiple imprecise random field parameters, Comput. Methods Appl. Mech. Eng., 300, 657-688, 2016 · Zbl 1425.74458
[35] Jos, K. G.; Vinoy, K. J., An efficient SSFEM-POD scheme for wideband stochastic analysis of permittivity variations, IEEE Trans. Antennas Propag., 2022
[36] Pitz, E.; Pochiraju, K., AI/ML for quantification and calibration of property uncertainty in composites, Machine Learning Applied to Composite Materials, 45-76, 2022, Springer Nature Singapore: Springer Nature Singapore Singapore
[37] Li, K.; Wu, D.; Gao, W.; Song, C., Spectral stochastic isogeometric analysis of free vibration, Comput. Methods Appl. Mech. Eng., 350, 1-27, 2019 · Zbl 1441.74258
[38] Li, K.; Wu, D.; Gao, W., Spectral stochastic isogeometric analysis for static response of FGM plate with material uncertainty, Thin Walled Struct., 132, 504-521, 2018
[39] Hewawasam, K. R.G.; Premaratne, K.; Shyu, M. L., Rule mining and classification in a situation assessment application: a belief-theoretic approach for handling data imperfections, IEEE Trans. Syst. Man Cybern. B, 37, 6, 1446-1459, 2007, (Cybernetics)
[40] Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J. N.; Wu, Z.; Ding, X., Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation, Med. Image Anal., 63, Article 101693 pp., 2020
[41] Sun, L.; Wang, J. X., Physics-constrained bayesian neural network for fluid flow reconstruction with sparse and noisy data, Theor. Appl. Mech. Lett., 10, 3, 161-169, 2020
[42] Feng, J.; Liu, L.; Wu, D.; Li, G.; Beer, M.; Gao, W., Dynamic reliability analysis using the extended support vector regression (X-SVR), Mech. Syst. Signal Process., 126, 368-391, 2019
[43] Wang, Q.; Wu, D.; Tin-Loi, F.; Gao, W., Machine learning aided stochastic structural free vibration analysis for functionally graded bar-type structures, Thin Walled Struct., 144, Article 106315 pp., 2019
[44] Wang, C.; Ye, Q.; Luo, P.; Ye, N.; Fu, L., Robust capped L1-norm twin support vector machine, Neural Netw., 114, 47-59, 2019 · Zbl 1434.68465
[45] Li, Y.; Sun, H.; Yan, W.; Cui, Q., R-CTSVM+: robust capped L1-norm twin support vector machine with privileged information, Inf. Sci., 574, 12-32, 2021, (Ny) · Zbl 1531.68091
[46] Chinchalkar, S.; Taylor, D. L., Geometric uncertainties in finite element analysis, Comput. Syst. Eng., 5, 2, 159-170, 1994
[47] Rozvany, G.I., & Lewiński, T., eds., 2014, Topology optimization in structural and continuum mechanics.
[48] Multiphysics, C.O.M.S.O.L, 2013, Comsol multiphysics reference manual. COMSOL Grenoble, France, 1084, 834.
[49] Pearson, R. K., Mining Imperfect Data: Dealing with Contamination and Incomplete Records, 2005, Society for Industrial and Applied Mathematics · Zbl 1079.62005
[50] Gordon, G.; Tibshirani, R., Karush-kuhn-tucker conditions, Optimization, 10, 725/36, 725, 2012
[51] Rousseeuw, P. J.; Hubert, M., Robust statistics for outlier detection, Wiley interdiscip. Rev. Data min. Knowl. Discov., 1, 1, 73-79, 2011
[52] Vinutha, H. P.; Poornima, B.; Sagar, B. M., Detection of outliers using interquartile range technique from intrusion dataset, (Proccedings of the Information and Decision Sciences: Proceedings of the 6th International Conference on FICTA, 2018, Springer Singapore), 511-518
[53] Pukelsheim, F., The three sigma rule, Am. Stat., 48, 2, 88-91, 1994
[54] Browne, M. W., Cross-validation methods, J. Math. Psychol., 44, 1, 108-132, 2000 · Zbl 0946.62045
[55] Picard, R. R.; Cook, R. D., Cross-validation of regression models, J. Am. Stat. Assoc., 79, 387, 575-583, 1984 · Zbl 0547.62047
[56] Joy, T. T.; Rana, S.; Gupta, S.; Venkatesh, S., December, hyperparameter tuning for big data using Bayesian optimisation, (Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), 2016, IEEE), 2574-2579
[57] Wu, J.; Chen, X. Y.; Zhang, H.; Xiong, L. D.; Lei, H.; Deng, S. H., Hyperparameter optimization for machine learning models based on Bayesian optimization, J. Electron. Sci. Technol., 17, 1, 26-40, 2019
[58] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383-405, 2015 · Zbl 1398.74270
[59] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199, 45-48, 2765-2778, 2010 · Zbl 1231.74022
[60] Zhang, M.; Hu, C.; Yin, C.; Qin, Q. H.; Wang, J., Design of elastic metamaterials with ultra-wide low-frequency stopbands via quantitative local resonance analysis, Thin Walled Struct., 165, Article 107969 pp., 2021
[61] Melkumyan, A.; Ramos, F., Multi-kernel Gaussian processes, (Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011)
[62] Zhang, N.; Xiong, J.; Zhong, J.; Leatham, K., Gaussian process regression method for classification for high-dimensional data with limited samples, (Proceedings of the 8th International Conference on Information Science and Technology (ICIST), 2018, IEEE), 358-363
[63] Ozer, S.; Chen, C. H.; Cirpan, H. A., A set of new Chebyshev kernel functions for support vector machine pattern classification, Pattern Recognit., 44, 7, 1435-1447, 2011 · Zbl 1210.68086
[64] Wang, Q.; Wu, D.; Li, G.; Gao, W., A virtual model architecture for engineering structures with twin extended support vector regression (TX-SVR) method, Comput. Methods Appl. Mech. Eng., 386, Article 114121 pp., 2021 · Zbl 1507.62263
[65] Wang, Q.; Feng, Y.; Wu, D.; Yang, C.; Yu, Y.; Li, G.; Gao, W., Polyphase uncertainty analysis through virtual modelling technique, Mech. Syst. Signal Process, 162, Article 108013 pp., 2022, SHAPE \* MERGEFORMAT
[66] Zhang, M.; Wang, Q.; Luo, Z.; Gao, W., Stochastic bandgap optimization for multiscale elastic metamaterials with manufacturing imperfections, Int. J. Mech. Sci, 268, 109035, 2024
[67] Zhang, M.; Wang, Q.; Luo, Z.; Gao, W., Virtual model-aided reliability analysis considering material and geometrical uncertainties for elastic metamaterials, Mech. Syst. Signal Process., 211, 111199, 2024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.