×

Dynamic computation for rigid-flexible multibody systems with hybrid uncertainty of randomness and interval. (English) Zbl 1420.70003

Summary: Considering the unavoidable uncertainty of material properties, geometry, and external loads existing in rigid-flexible multibody systems, a new hybrid uncertain computational method is proposed. Two evaluation indexes, namely interval mean and interval error bar, are presented to quantify the system response. The dynamic model of a rigid-flexible multibody system is built by using the absolute node coordinate formula (ANCF). The geometry size and external loads of rigid components are considered as interval variables, while the Young’s modulus and Poisson’s ratio of flexible components are expressed by a random field. The continuous random field is discretized to Gaussian random variables by using the expansion optimal linear estimation (EOLE) method. This paper proposes an orthogonal series expansion method, termed as improved Polynomial-Chaos-Chebyshev-Interval (PCCI) method, which solves the random and interval uncertainty under one integral framework. The improved PCCI method has some sampling points located on the bounds of interval variables, which lead to a higher accuracy in estimating the bounds of multibody systems’ response compared to the PCCI method. A rigid-flexible slider-crank mechanism is used as a numerical example, which demonstrates that the improved PCCI method has a higher accuracy than the PCCI method.

MSC:

70E55 Dynamics of multibody systems
60G60 Random fields
Full Text: DOI

References:

[1] Arnold, M., Bruls, O.: Convergence of the generalized-α \(\alpha\) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185-202 (2007) · Zbl 1121.70003 · doi:10.1007/s11044-007-9084-0
[2] Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering analyses. Mech. Syst. Signal Process. 37(1-2), 4-29 (2013). https://doi.org/10.1016/j.ymssp.2013.01.024 · doi:10.1016/j.ymssp.2013.01.024
[3] Betz, W., Papaioannou, I., Straub, D.: Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion. Comput. Methods Appl. Mech. Eng. 271, 109-129 (2014). https://doi.org/10.1016/j.cma.2013.12.010 · Zbl 1296.65191 · doi:10.1016/j.cma.2013.12.010
[4] Do, D.M., Gao, W., Song, C.: Stochastic finite element analysis of structures in the presence of multiple imprecise random field parameters. Comput. Methods Appl. Mech. Eng. 300, 657-688 (2016). https://doi.org/10.1016/j.cma.2015.11.032 · Zbl 1425.74458 · doi:10.1016/j.cma.2015.11.032
[5] Du, X., Venigella, P.K., Liu, D.: Robust mechanism synthesis with random and interval variables. Mech. Mach. Theory 44(7), 1321-1337 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.10.003 · Zbl 1178.70019 · doi:10.1016/j.mechmachtheory.2008.10.003
[6] Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996) · Zbl 0859.65001 · doi:10.1007/978-1-4757-2553-7
[7] Gao, W., Song, C., Tin-Loi, F.: Probabilistic interval analysis for structures with uncertainty. Struct. Saf. 32(3), 191-199 (2010) · doi:10.1016/j.strusafe.2010.01.002
[8] García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1-28 (2008). https://doi.org/10.1007/s11044-008-9103-9 · Zbl 1341.70006 · doi:10.1007/s11044-008-9103-9
[9] Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45(1-2), 109-130 (2006) · Zbl 1138.74391 · doi:10.1007/s11071-006-1856-1
[10] Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359-384 (2008) · Zbl 1347.74049 · doi:10.1007/s11044-008-9125-3
[11] Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer, New York (1991) · Zbl 0722.73080 · doi:10.1007/978-1-4612-3094-6
[12] Isukapalli, S.S.: Uncertainty Analysis of Transport-Transformation Models. State University of New Jersey, New Brunswick (1999)
[13] Jiang, C., Zheng, J., Han, X.: Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties: a review. Struct. Multidiscip. Optim. (2017). https://doi.org/10.1007/s00158-017-1864-4 · doi:10.1007/s00158-017-1864-4
[14] Kang, Z., Luo, Y.: Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput. Methods Appl. Mech. Eng. 198(41-44), 3228-3238 (2009) · Zbl 1230.74153 · doi:10.1016/j.cma.2009.06.001
[15] Li, C.C., Der Kiureghian, A.: Optimal discretization of random field. J. Eng. Mech. 119, 1136-1154 (1993) · doi:10.1061/(ASCE)0733-9399(1993)119:6(1136)
[16] Sandu, C., Sandu, A., Blanchard, E.D.: Polynomial chaos-based parameter estimation methods applied to a vehicle system. J. Multi-Body Dyn. 224(1), 59-81 (2010). https://doi.org/10.1243/14644193jmbd204 · doi:10.1243/14644193jmbd204
[17] Sarkar, A., Ghanem, R.: Mid-frequency structural dynamics with parameter uncertainty. Comput. Methods Appl. Mech. Eng. 191, 5499-5513 (2002) · Zbl 1083.74552 · doi:10.1016/S0045-7825(02)00465-6
[18] Shabana, A.A.: An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies. University of Illinois, Chicago (1997)
[19] Shabana, A.A.: Definition of the slopes and absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339-348 (1997) · Zbl 0890.73071 · doi:10.1023/A:1009740800463
[20] Shabana, A.A.: Flexible multi-body dynamics review of past and recent developments. Multibody Syst. Dyn. 1, 189-222 (1997) · Zbl 0893.70008 · doi:10.1023/A:1009773505418
[21] Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005) · Zbl 1068.70002 · doi:10.1017/CBO9780511610523
[22] Shabana, A.A.: ANCF reference node for multibody system analysis. J. Multi-Body Dyn. 229(1), 109-112 (2014). https://doi.org/10.1177/1464419314546342 · doi:10.1177/1464419314546342
[23] Sudret, B., Der Kiureghian, A.: Stochastic Finite Element Methods and Reliability a State-of-the-Art Report. University of Calnifornia, Berkeley (2000)
[24] Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 021009 (2009). https://doi.org/10.1115/1.3079783 · doi:10.1115/1.3079783
[25] Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1-2), 25-47 (2010). https://doi.org/10.1007/s11071-010-9843-y · Zbl 1355.70014 · doi:10.1007/s11071-010-9843-y
[26] Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1-2), 25-47 (2011). https://doi.org/10.1007/s11071-010-9843-y · Zbl 1355.70014 · doi:10.1007/s11071-010-9843-y
[27] Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259-284 (2014). https://doi.org/10.1007/s11044-014-9420-0 · doi:10.1007/s11044-014-9420-0
[28] Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid – flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84(2), 527-548 (2016). https://doi.org/10.1007/s11071-015-2504-4 · Zbl 1354.70023 · doi:10.1007/s11071-015-2504-4
[29] Wang, Z., Tian, Q., Hu, H.: Dynamics of flexible multibody systems with hybrid uncertain parameters. Mech. Mach. Theory 121, 128-147 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.09.024 · doi:10.1016/j.mechmachtheory.2017.09.024
[30] Wu, J., Luo, Z., Zhang, Y., Zhang, N., Chen, L.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608-630 (2013). https://doi.org/10.1002/nme.4525 · Zbl 1352.70017 · doi:10.1002/nme.4525
[31] Wu, J., Luo, Z., Zhang, N., Zhang, Y.: A new uncertain analysis method and its application in vehicle dynamics. Mech. Syst. Signal Process. 50-51, 659-675 (2015). https://doi.org/10.1016/j.ymssp.2014.05.036 · doi:10.1016/j.ymssp.2014.05.036
[32] Wu, D., Gao, W., Song, C., Tangaramvong, S.: Probabilistic interval stability assessment for structures with mixed uncertainty. Struct. Saf. 58, 105-118 (2016). https://doi.org/10.1016/j.strusafe.2015.09.003 · doi:10.1016/j.strusafe.2015.09.003
[33] Wu, J., Luo, Z., Zhang, N., Zhang, Y.: Dynamic computation of flexible multibody system with uncertain material properties. Nonlinear Dyn. 85(2), 1231-1254 (2016). https://doi.org/10.1007/s11071-016-2757-6 · Zbl 1355.65140 · doi:10.1007/s11071-016-2757-6
[34] Wu, J., Luo, Z., Li, H., Zhang, N.: Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Comput. Methods Appl. Mech. Eng. 319, 414-441 (2017). https://doi.org/10.1016/j.cma.2017.03.002 · Zbl 1439.74302 · doi:10.1016/j.cma.2017.03.002
[35] Wu, J., Luo, Z., Li, H., Zhang, N.: A new hybrid uncertainty optimization method for structures using orthogonal series expansion. Appl. Math. Model. 45, 474-490 (2017). https://doi.org/10.1016/j.apm.2017.01.006 · Zbl 1446.74065 · doi:10.1016/j.apm.2017.01.006
[36] Wu, J., Luo, Z., Zhang, N., Zhang, Y., Walker, P.D.: Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties. Mech. Syst. Signal Process. 85, 487-511 (2017). https://doi.org/10.1016/j.ymssp.2016.08.040 · doi:10.1016/j.ymssp.2016.08.040
[37] Xia, B., Yu, D., Liu, J.: Change-of-variable interval stochastic perturbation method for hybrid uncertain structural-acoustic systems with random and interval variables. J. Fluids Struct. 50, 461-478 (2014) · doi:10.1016/j.jfluidstructs.2014.07.005
[38] Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191, 4927-4948 (2002) · Zbl 1016.65001 · doi:10.1016/S0045-7825(02)00421-8
[39] Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137-167 (2003). https://doi.org/10.1016/s0021-9991(03)00092-5 · Zbl 1047.76111 · doi:10.1016/s0021-9991(03)00092-5
[40] Zhang, J., Ellingwood, B.: Orthogonal series expansion of random fields in reliability analysis. J. Eng. Mech. 120, 2660-2677 (1994) · doi:10.1061/(ASCE)0733-9399(1994)120:12(2660)
[41] Zhang, Y., Tian, Q., Chen, L., Yang, J.: Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21(3), 281-303 (2008). https://doi.org/10.1007/s11044-008-9139-x · Zbl 1350.70030 · doi:10.1007/s11044-008-9139-x
[42] Zhou, B., Zi, B., Qian, S.: Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty. Nonlinear Dyn. 90, 2599-2626 (2017) · doi:10.1007/s11071-017-3826-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.