×

On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case. (English) Zbl 1480.65017

Summary: We propose a positivity preserving implicit Euler-Maruyama scheme for a jump-extended Cox-Ingersoll-Ross (CIR) process where the jumps are governed by a compensated spectrally positive \(\alpha\)-stable process for \(\alpha \in (1,2)\). Different to the existing positivity preserving numerical schemes for jump-extended CIR or constant elasticity variance process, the model considered here has infinite activity jumps. We calculate, in this specific model, the strong rate of convergence and give some numerical illustrations. Jump extended models of this type were initially studied in the context of branching processes and was recently introduced to the financial mathematics literature to model sovereign interest rates, power and energy markets.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)

References:

[1] Asmussen, S., Rosinski, J.: Approximations of small jumps of Levy processes with a view towards simulation. J. Appl. Probab. 38(2), 482-493 (2001) · Zbl 0989.60047 · doi:10.1239/jap/996986757
[2] Applebaum, D.: Lévy Process and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009) · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[3] Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11(4), 355-384 (2005) · Zbl 1100.65007 · doi:10.1515/156939605777438569
[4] Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Stat. Probab. Lett. 83(2), 602-607 (2013) · Zbl 1273.65007 · doi:10.1016/j.spl.2012.10.034
[5] Aghdas, A.S.F., Hossein, S.M., Tahmasebi, T.: Convergence and non-negativity preserving of the solution of balanced method for the delay CIR model with jump. arXiv:1712.03206, Working paper 2017
[6] Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM Probab. Stat. 12, 1-11 (2008) · Zbl 1183.65004 · doi:10.1051/ps:2007030
[7] Bossy, M., Diop, A.: An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form \[|x|^\alpha \]|x|α, \[ \alpha \in [1/2, 1)\] α∈[1/2,1). Doctoral dissertation, INRIA (2007)
[8] Brigo, D., Alfonsi, A.: Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model. Finance Stoch. 9(1), 29-42 (2005) · Zbl 1065.60085 · doi:10.1007/s00780-004-0131-x
[9] Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process. Proc. R. Soc. A 468(2140), 1105-1115 (2011) · Zbl 1364.65013 · doi:10.1098/rspa.2011.0505
[10] Diop, A.: Sur la discrétisation et le comportement à petit bruit d’EDS multidimensionnelles dont les coeffcients sont à dérivées singuliéres. Ph.D. thesis, INRIA (2003)
[11] Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984-1053 (2003) · Zbl 1048.60059 · doi:10.1214/aoap/1060202833
[12] Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343-1376 (2000) · Zbl 1055.91524 · doi:10.1111/1468-0262.00164
[13] Fu, Z., Li, Z.: Stochastic equations of non-negative processes with jumps. Stoch. Process. Appl. 120(3), 306-330 (2010) · Zbl 1184.60022 · doi:10.1016/j.spa.2009.11.005
[14] Hashimoto, H.; Donati-Martin, C. (ed.); Lejay, A. (ed.); Rouault, A. (ed.), Approximation and stability of solutions of SDEs driven by a symmetric \[\alpha\] α-stable process with non-Lipschitz coefficients, No. 2078, 181-199 (2013), Heidelberg · Zbl 1281.60062 · doi:10.1007/978-3-319-00321-4_7
[15] Hashimoto, H., Tsuchiya, T.: On the convergent rates of Euler-Maruyama schemes for SDEs driven by rotation invariant \[\alpha\] α-stable processes. RIMS Kokyuroku 1855, 229-236 (2013) (in Japanese)
[16] Hefter, H., Herzwurm, A.: Strong convergence rates for Cox-Ingersoll-Ross processes: full parameter range. J. Math. Anal. Appl. 459(2), 1079-1101 (2018) · Zbl 1388.60117 · doi:10.1016/j.jmaa.2017.10.076
[17] Jiao, Y., Ma, C., Scotti, S.: Alpha-CIR model with branching processes in sovereign interest rate modelling. Finance Stoch. 21(3), 789-813 (2017) · Zbl 1378.91123 · doi:10.1007/s00780-017-0333-7
[18] Jiao, Y., Ma, C., Scotti, S., Sgarra, C.: A branching process approach to power markets. Accepted for publication in Energy Econ. (2018). https://doi.org/10.1016/j.eneco.2018.03.002
[19] Kohatsu-Higa, A., Tankov, P.: Jump-adapted discretization schemes for Lévy-driven SDEs. Stoch. Process. Appl. 120(11), 2258-2285 (2010) · Zbl 1202.60113 · doi:10.1016/j.spa.2010.07.001
[20] Li, Z., Mytnik, L.: Strong solutions for stochastic differential equations with jumps. Ann. Inst. H. Poincaré Probab. Stat. 47(4), 1055-1067 (2011) · Zbl 1273.60070 · doi:10.1214/10-AIHP389
[21] Li, Z., Ma, C.: Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model. Stoch. Process. Appl. 125(8), 3196-3233 (2015) · Zbl 1362.62047 · doi:10.1016/j.spa.2015.03.002
[22] Li, L., Taguchi, D.: On the Euler-Maruyama scheme for spectrally one-sided Lévy driven SDEs with Hölder continuous coefficients. Stat. Probab. Lett. 146, 15-26 (2019) · Zbl 1418.60100 · doi:10.1016/j.spl.2018.10.017
[23] Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40(4), 1583-1604 (2002) · Zbl 1028.60064 · doi:10.1137/S0036142901395588
[24] Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defied in a domain. Numer. Math. 128, 103-136 (2014) · Zbl 1306.60075 · doi:10.1007/s00211-014-0606-4
[25] Stamatiou, I.: An explicit positivity preserving numerical scheme for CIR/CEV type delay models with jump. arXiv:1803.00327, Working Paper 2018 · Zbl 1420.65008
[26] Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2011)
[27] Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155-167 (1971) · Zbl 0236.60037 · doi:10.1215/kjm/1250523691
[28] Yang, X., Wang, X.: A transformed jump-adapted backward Euler method for jump-extended CIR and CEV models. Numer. Algorithms 74(1), 39-57 (2017) · Zbl 1359.65016 · doi:10.1007/s11075-016-0137-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.