×

Jacobi collocation approximation for solving multi-dimensional Volterra integral equations. (English) Zbl 1401.65148

Summary: This paper addresses the solution of one- and two-dimensional Volterra integral equations (VIEs) by means of the spectral collocation method. The novel technique takes advantage of the properties of shifted Jacobi polynomials and is applied for solving multi-dimensional VIEs. Several numerical examples demonstrate the efficiency of the method and an error analysis verifies the correctness and feasibility of the proposed method when solving VIE.

MSC:

65R20 Numerical methods for integral equations
45D05 Volterra integral equations
Full Text: DOI

References:

[1] Mohamed A. Abdelkawy, Samer S. Ezz-Eldien and Ahmad Z.M. Amin, A Jacobi spectral collocation scheme for solving Abel’s integral equations, Prog. Fractional Differ. Appl. 1(2015), 1-14.
[2] E.L. Kosarev, Applications of integral equations of the first kind in experiment physics, Comput. Phys. Commun. 20(1980), 69-75.
[3] Sohrab Ali Yousefi, Numerical solution of Abel’s integral equation by using Legendre wavelets, Appl. Math. Comput. 175(2006), 574-580. · Zbl 1088.65124
[4] Ricardo Estrada and Ram P. Kanwal, Singular integral equations, Birkhauser, Boston, 2000. · Zbl 0945.45001
[5] Ivan Kuz’mich Lifanov, Lev N. Poltavskii and M.G. M. Vainikko, Hypersingular integral equations and their applications, Taylor & Francis, London, 2004. · Zbl 1061.45001
[6] N. Levinson, A nonlinear Volterra equation arising in the theory of superfluidity, J. Math. Anal. Appl. 1(1960), 1-11. · Zbl 0094.08501
[7] G.S. Kit and A.V. Maksymuk, The method of Volterra integral equations in contact problems for thin-walled structural elements, J. Math. Sci. 90(1998), 1863-1867. · Zbl 0925.73776
[8] Ravi P. Agarwal and Donal O’Regan, Integral and integrodifferential equations, Gordon and Breach Science Publishers, Amsterdam, 2000. · Zbl 0936.00008
[9] Haci Mehmet Baskonus, Toufik Mekkaoui, Zakia Hammouch and Hasan Bulut, Active control of a chaotic fractional order economic system, Entropy 17(2015), 5771-5783.
[10] Hermann Brunner and Pieter Jacobus Houwen, The numerical solution of Volterra equations, Elsevier Science Ltd., Amsterdam, 1986. · Zbl 0611.65092
[11] Constantin Corduneanu, Integral equations and stability of feedback systems, Academic Press, New York, 1973. · Zbl 0273.45001
[12] M.R. Crisci, E. Russo and A. Vecchio, On the stability of the one-step exact collocation methods for the numerical solution of the second kind Volterra integral equation, BIT Numer. Math. 29(1989), 258-269. · Zbl 0675.65140
[13] Gustaf Gripenberg, Stig-Olof Londen and Olof Staffans, Volterra integral and functional equations, Cambridge University Press, Cambridge, 1990. · Zbl 0695.45002
[14] Haorui Liu and Juan Yang, Sliding-mode synchronization control for uncertain fractional-order chaotic systems with time delay, Entropy 17(2015), 4202-4214.
[15] Kendall E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, 1997. · Zbl 0899.65077
[16] H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 2004. · Zbl 1059.65122
[17] Nehzat Ebrahimi and Jalil Rashidinia, Collocation method for linear and nonlinear Fredholm and Volterra integral equations, Appl. Math. Comput. 270(2015), 156-164. · Zbl 1337.65177
[18] P.K. Sahu and S. Saha Ray, Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system, Appl. Math. Comput. 256(2015), 715-723. · Zbl 1338.65208
[19] A.N. Tynda, Numerical algorithms of optimal complexity for weakly singular Volterra integral equations, Comput. Meth. Appl. Math. 6(2006), 436-442. · Zbl 1106.65122
[20] Weiming Wang, A mechanical algorithm for solving the Volterra integral equation, Appl. Math. Comput. 172(2006), 1323-1341. · Zbl 1088.65120
[21] Zaid M. Odibat, Differential transform method for solving Volterra integral equation with separable kernels, Math. Comput. Model. 48(2008), 1144-1149. · Zbl 1187.45003
[22] Mladen Meštrovi´c and Eva Ocvirk, An application of Romberg extrapolation on quadrature method for solving linear Volterra integral equations of the second kind, Appl. Math. Comput. 194(2007), 389-393. · Zbl 1193.65025
[23] Jafar Saberi-Nadjafi, Mohammad Mehrabinezhad and T. Diogo, The Coiflet-Galerkin method for linear Volterra integral equations, Appl. Math. Comput. 221(2013), 469-483. · Zbl 1329.65321
[24] H. Guo, H. Cai and X. Zhang, A Jacobi-collocation method for second kind Volterra integral equations with a smooth Kernel, Abstr. Appl. Anal. 2014 (2014). Article ID 913691, 10 pages. · Zbl 1474.65494
[25] V. Balakumar and K. Murugesan, Single-term Walsh series method for systems of linear Volterra integral equations of the second kind, Appl. Math. Comput. 228(2014), 371-376. · Zbl 1364.65289
[26] S. Bazm, Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations, J. Comput. Appl. Math. 275(2015), 44-60. · Zbl 1297.65202
[27] M.I. Berenguer, D. Gámez, A.I. Garralda-Guillem, M. Ruiz Galán and M.C. Serrano Pérez, Biorthogonal systems for solving Volterra integral equation systems of the second kind, J. Comput. Appl. Math. 235(2011), 1875-1883. · Zbl 1215.65192
[28] Heng Liu, Shenggang Li, Hongxing Wang, Yuhong Huo and Junhai Luo, Adaptive synchronization for a class of uncertain fractional-order neural networks, Entropy 17(2015), 7185-7200.
[29] K. Maleknejad and E. Najafi, Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization, Commun. Nonlinear Sci. Numer. Simul. 16(2011), 93-100. · Zbl 1221.65336
[30] Farshid Mirzaee, Numerical computational solution of the linear Volterra integral equations system via rationalized Haar functions, J. King Saud University-Sci. 22(2010), 265-268.
[31] Farshid Mirzaee and Saeed Bimesl, A new Euler matrix method for solving systems of linear Volterra integral equations with variable coefficients, J. Egypt. Math. Soc. 22(2014), 238-248. · Zbl 1296.45003
[32] Soheil Salahshour, Ali Ahmadian, Norazak Senu, Dumitru Baleanu and Praveen Agarwal, On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem, Entropy 17(2015), 885-902. · Zbl 1338.34025
[33] A. Shidfar and A. Molabahrami, Solving a system of integral equations by an analytic method, Math. Comput. Model. 54(2011), 828-835. · Zbl 1225.65124
[34] A. Tari, M.Y. Rahimi, S. Shahmorad and F. Talati, Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method, J. Comput. Appl. Math. 228(2009), 70-76. · Zbl 1176.65164
[35] Farshid Mirzaee and Ali Akbar Hoseini, A computational method based on hybrid of block-pulse functions and Taylor series for solving two-dimensional nonlinear integral equations, Alexandria Eng. J. 53(2014), 185-190.
[36] A. Tari and S. Shahmorad, A computational method for solving two-dimensional linear Volterra integral equations of the first kind, Sci. Iranica 19(2012), 829-835.
[37] M. Aguilar and H. Brunner, Collocation method for second-order Volterra integro-differential equations, Appl. Numer. Math. 4(1988), 455-470. · Zbl 0651.65098
[38] A. Brunner, H. Pedas and G. Vainikko, A spline collocation method for linear Volterra integro-differential equations with weakly singular kernels, BIT Numer. Math. 41(2001), 891-900.
[39] A.H. Bhrawy, E.H. Doha, S.S. Ezz-Eldien and M.A. Abdelkawy, A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations, Calcolo 53(2016), 1-17. · Zbl 1335.65083
[40] A.H. Bhrawy and S.S. Ezz-Eldien, A new Legendre operational technique for delay fractional optimal control problems, Calcolo (2015), Doi: . · Zbl 1377.49032 · doi:10.1007/s10092-015-0160-1
[41] Ali H. Bhrawy, Taha M. Taha and José A.Tenreiro Machado, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dyn. (2015), 1-30. · Zbl 1348.65106
[42] E.H. Doha, A.H. Bhrawy and S.S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model. 36(2012), 4931-4943. · Zbl 1252.34019
[43] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Review 55(2013), 462-489. · Zbl 1273.65182
[44] Magda Rebelo and Teresa Diogo, A hybrid collocation method for a nonlinear Volterra integral equation with weakly singular kernel, J. Comput. Appl. Math. 234(2010), 2859-2869. · Zbl 1196.65202
[45] J. Saberi-Nadjafi, M. Mehrabinezhad and T. Diogo, The Coiflet-Galerkin method for linear Volterra integral equations, Appl. Math. Comput. 221(2013), 496-483. · Zbl 1329.65321
[46] Niyazi Şahin, Şuayip Yüzbaşi and Mustafa Gülsu, A collocation approach for solving systems of linear Volterra integral equations with variable coefficients, Comput. Math. Appl. 62(2011), 755-769. · Zbl 1228.65248
[47] A. Townsend and S. Olver, The automatic solution of partial differential equations using a global spectral method, J. Comput. Phys. 299(2015), 106-123. · Zbl 1352.65579
[48] Xiao-Jun Yang, A new integral transform method for solving steady heat-transfer problem, Therm. Sci. 20(2016), S639-S642.
[49] Xiao-Jun Yang, A new integral transform operator for solving the heat-diffusion problem, Appl. Math. Lett. 64(2017), 193-197. · Zbl 1353.35018
[50] A.H. Bhrawy, A highly accurate collocation algorithm for 1+1 and 2+1 fractional percolation equations, J. Vib. Control 2015 (2015), doi: . · Zbl 1366.35213 · doi:10.1177/1077546315597815
[51] A.H. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numer. Algorithms 73(2016), 91-113. · Zbl 1348.65143
[52] A.H. Bhrawy and M.A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, J. Comput. Phys. 294(2015), 462-483. · Zbl 1349.65503
[53] A.H. Bhrawy, E.H. Doha, M.A. Abdelkawy and R.M. Hafez, An efficient collocation algorithm for multidimensional wave type equations with nonlocal conservation conditions, Appl. Math. Modell. 39(2015), 5616-5635. · Zbl 1443.65237
[54] A.H. Bhrawy and M.A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn. 80(2015), 101-116. · Zbl 1345.65060
[55] Hermann Brunner, Implicitly linear collocation methods for nonlinear Volterra equations, Appl. Numer. Math. 9(1992), 235-247. · Zbl 0761.65103
[56] Yanzhao Cao, Terry Herdman and Yuesheng Xu, A hybrid collocation method for Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal. 41(2003), 364-381. · Zbl 1042.65106
[57] Danilo Costarelli and Renato Spigler, Solving Volterra integral equations of the second kind by sigmoidal functions approximation, J. Integral Equ. Appl. 25(2013), 193-222. · Zbl 1285.65086
[58] Danilo Costarelli and Renato Spigler, A collocation method for solving nonlinear Volterra integro-differential equations of neutral type by sigmoidal functions, J. Integral Equ. Appl. 26(2014), 15-52. · Zbl 1288.65185
[59] E.H. Doha, A.H. Bhrawy, M.A. Abdelkawy and Robert A. Van Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations, J. Comput. Phys. 261(2014), 244-255. · Zbl 1349.65511
[60] Eid Doha, Ali Bhrawy and Mohammed Abdelkawy, A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions, Open Phys. 12(2014), 637-653.
[61] Ya-Song Sun, Jing Ma and Ben-Wen Li, Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity, Int. J. Therm. Sci. 90(2015), 187-196.
[62] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods: fundamentals in single domains, Springer-Verlag, Berlin Heidelberg, 2006. · Zbl 1093.76002
[63] Gabor Szeg, Orthogonal polynomials, American Mathematical Soc., Providence, Rhode Island, 1939. · JFM 65.0278.03
[64] Yudell L. Luke and Yudell Leo Luke, The special functions and their approximations, Academic Press, New York, 1969. · Zbl 0193.01701
[65] Richard K. Miller, Nonlinear Volterra integral equations, W. A. Benjamin, Menlo Park CA, 1971. · Zbl 0448.45004
[66] E. Babolian, Khosrow Maleknejad, M. Roodaki and H. Almasieh, Two-dimensional triangular functions and their applications to nonlinear 2D Volterra-Fredholm integral equations, Comput. Mathe. Appl. 60(2010), 1711-1722. · Zbl 1202.65168
[67] A.H. Bhrawy, M.A. Zaky and R.A. Van Gorder, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer. Algorithms 2015(2015), 1-30.
[68] Jie Shen, Tao Tang and Li-Lian Wang, Spectral methods: algorithms, analysis and applications, Springer Science & Business Media, Berlin Heidelberg, 2011. · Zbl 1227.65117
[69] Tao Tang, Xiang Xu and Jin Cheng, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math. 26(2008), 825-837. · Zbl 1174.65058
[70] M.R. Eslahchi, Mehdi Dehghan and M. Parvizi, Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math. 257(2014), 105-128. · Zbl 1296.65106
[71] Y. Chen and T. Tang, Spectral methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Appl. Math. 233(2009), 938-950. · Zbl 1186.65161
[72] Yanping Chen and Tao Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comput. 79(2010), 147-167. · Zbl 1207.65157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.