×

A hybrid LDG-HWENO scheme for KdV-type equations. (English) Zbl 1349.65464

Summary: A hybrid LDG-HWENO scheme is proposed for the numerical solution of KdV-type partial differential equations. It evolves the cell averages of the physical solution and its moments (a feature of Hermite WENO) while discretizes high order spatial derivatives using the local DG method. The new scheme has the advantages of both LDG and HWENO methods, including the ability to deal with high order spatial derivatives and the use of a small number of global unknown variables. The latter is independent of the order of the scheme and the spatial order of the underlying differential equations. One and two dimensional numerical examples are presented to show that the scheme can attain the same formal high order accuracy as the LDG method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Balsara, D. S.; Altmann, C.; Munz, C.-D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J. Comput. Phys., 226, 586-620 (2007) · Zbl 1124.65072
[2] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[3] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113 (1989) · Zbl 0677.65093
[4] Cockburn, B.; Hou, S.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581 (1990) · Zbl 0695.65066
[5] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[6] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[7] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput. Fluids, 39, 60-76 (2010) · Zbl 1242.76161
[8] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[9] Dumbser, M.; Facchini, M., A local space-time discontinuous Galerkin method for Boussinesq-type equations, Appl. Math. Comput., 272, 336-346 (2016) · Zbl 1410.76167
[10] Iwasaki, H.; Toh, S.; Kawahara, T., Cylindrical quasi-solitons of the Zakharov-Kuznetsov equation, Physica D, 43, 293-303 (1990) · Zbl 0714.35076
[11] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[12] Liu, X.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[13] Luo, H.; Luo, L.; Nourgaliev, R.; Mousseau, V. A.; Dinh, N., A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, J. Comput. Phys., 229, 6961-6978 (2010) · Zbl 1425.35138
[14] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 115-135 (2003) · Zbl 1039.65068
[15] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, Comput. Fluids, 34, 642-663 (2005) · Zbl 1134.65358
[16] Reed, W. H.; Hill, T. R., Triangular mesh methods for neutron transport equation (1973), Los Alamos Scientific Laboratory Report LA-UR-73-479
[17] Shi, J.; Hu, C.; Shu, C.-W., A technique of treating negative weights in WENO schemes, J. Comput. Phys., 175, 108-127 (2002) · Zbl 0992.65094
[18] Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9, 1073-1084 (1988) · Zbl 0662.65081
[19] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[20] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[21] Xu, Y.; Shu, C.-W., Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Commun. Comput. Phys., 7, 1-46 (2010) · Zbl 1364.65205
[22] Xu, Y.; Shu, C.-W., Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations, Physica D, 208, 21-58 (2005) · Zbl 1078.35111
[23] Yan, J.; Shu, C.-W., A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40, 769-791 (2002) · Zbl 1021.65050
[24] Zheng, F.; Qiu, J., Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes, J. Comput. Phys., 307, 423-445 (2016) · Zbl 1354.65179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.