×

Reconstructed error and linear representation coefficients restricted by \(\ell_1\)-minimization for face recognition under different illumination and occlusion. (English) Zbl 1426.94032

Summary: The problem of recognizing human faces from frontal views with varying illumination, occlusion, and disguise is a great challenge to pattern recognition. A general knowledge is that face patterns from an objective set sit on a linear subspace. On the proof of the knowledge, some methods use the linear combination to represent a sample in face recognition. In this paper, in order to get the more discriminant information of reconstruction error, we constrain both the linear combination coefficients and the reconstruction error by \(\ell_1\)-minimization which is not apt to be disturbed by outliners. Then, through an equivalent transformation of the model, it is convenient to compute the parameters in a new underdetermined linear system. Next, we use an optimization method to get the approximate solution. As a result, the minimum reconstruction error has contained much valuable discriminating information. The gradient of this variable is measured to decide the final recognition. The experiments show that the recognition protocol based on the reconstruction error achieves high performance on available databases (Extended Yale B and AR Face database).

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C90 Applications of mathematical programming

Software:

AR face
Full Text: DOI

References:

[1] Jain, A. K.; Ross, A.; Prabhakar, S., An introduction to biometric recognition, IEEE Transactions on Circuits and Systems for Video Technology, 14, 1, 4-20, (2004) · doi:10.1109/TCSVT.2003.818349
[2] Ou, W.; You, X.; Tao, D.; Zhang, P.; Tang, Y.; Zhu, Z., Robust face recognition via occlusion dictionary learning, Pattern Recognition, 47, 4, 1559-1572, (2014) · doi:10.1016/j.patcog.2013.10.017
[3] Huang, J.; You, X.; Yuan, Y.; Yang, F.; Lin, L., Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet, Neurocomputing, 73, 4–6, 883-894, (2010) · doi:10.1016/j.neucom.2009.09.016
[4] He, Z.; Li, X.; You, X.; Tao, D.; Tang, Y. Y., Connected component model for multi-object tracking, IEEE Transactions on Image Processing, 25, 8, 3698-3711, (2016) · Zbl 1408.94243 · doi:10.1109/TIP.2016.2570553
[5] Zhao, W.; Chellappa, R., Face Processing: Advanced Modeling and Methods, (2011), Academic Press
[6] Abate, A. F.; Nappi, M.; Riccio, D.; Sabatino, G., 2D and 3D face recognition: a survey, Pattern Recognition Letters, 28, 14, 1885-1906, (2007) · doi:10.1016/j.patrec.2006.12.018
[7] Zhou, Z.; Wagner, A.; Mobahi, H.; Wright, J.; Ma, Y., Face recognition with contiguous occlusion using Markov Random Fields, Proceedings of the 12th International Conference on Computer Vision (ICCV ’09), IEEE · doi:10.1109/ICCV.2009.5459383
[8] Gao, Q.-X.; Zhang, L.; Zhang, D., Face recognition using FLDA with single training image per person, Applied Mathematics and Computation, 205, 2, 726-734, (2008) · Zbl 1152.68679 · doi:10.1016/j.amc.2008.05.019
[9] Zhang, T.; Tang, Y. Y.; Fang, B.; Shang, Z.; Liu, X., Face recognition under varying illumination using gradientfaces, IEEE Transactions on Image Processing, 18, 11, 2599-2606, (2009) · Zbl 1371.94457 · doi:10.1109/TIP.2009.2028255
[10] Wang, Y.; Zhang, L.; Liu, Z.; Hua, G.; Wen, Z.; Zhang, Z.; Samaras, D., Face relighting from a single image under arbitrary unknown lighting conditions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 11, 1968-1984, (2009) · doi:10.1109/TPAMI.2008.244
[11] Xie, X.; Zheng, W.-S.; Lai, J.; Yuen, P. C.; Suen, C. Y., Normalization of face illumination based on large- and small-scale features, IEEE Transactions on Image Processing, 20, 7, 1807-1821, (2011) · Zbl 1372.94277 · doi:10.1109/TIP.2010.2097270
[12] Arandjelović, O., Gradient edge map features for frontal face recognition under extreme illumination changes, Proceedings of the 2012 23rd British Machine Vision Conference (BMVC ’12) · doi:10.5244/C.26.12
[13] Martínez, A. M., Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 6, 748-763, (2002) · doi:10.1109/TPAMI.2002.1008382
[14] Fidler, S.; Skočaj, D.; Leonardis, A., Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 3, 337-350, (2006) · doi:10.1109/TPAMI.2006.46
[15] Belhumeur, P. N.; Hespanha, J. P.; Kriegman, D. J., Eigenfaces vs. fisherfaces: recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 7, 711-720, (1997) · doi:10.1109/34.598228
[16] Xu, D.; Yan, S.; Tao, D.; Lin, S.; Zhang, H.-J., Marginal Fisher analysis and its variants for human gait recognition and content-based image retrieval, IEEE Transactions on Image Processing, 16, 11, 2811-2821, (2007) · doi:10.1109/TIP.2007.906769
[17] Turk, M.; Pentland, A., Eigenfaces for recognition, Journal of Cognitive Neuroscience, 3, 1, 71-86, (1991) · doi:10.1162/jocn.1991.3.1.71
[18] Li, H.; Jiang, T.; Zhang, K., Efficient and robust feature extraction by maximum margin criterion, IEEE Transactions on Neural Networks, 17, 1, 157-165, (2006) · doi:10.1109/TNN.2005.860852
[19] Liu, J.; Chen, S.; Tan, X.; Zhang, D., Comments on ‘Efficient and robust feature extraction by maximum margin criterion’, IEEE Transactions on Neural Networks, 18, 6, 1862-1864, (2007) · doi:10.1109/TNN.2007.900813
[20] Kim, J.; Choi, J.; Yi, J.; Turk, M., Effective representation using ICA for face recognition robust to local distortion and partial occlusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 12, 1977-1981, (2005) · doi:10.1109/TPAMI.2005.242
[21] Bilginer Gülmezoǧlu, M.; Dzhafarov, V.; Barkana, A., The common vector approach and its relation to principal component analysis, IEEE Transactions on Speech and Audio Processing, 9, 6, 655-662, (2001) · doi:10.1109/89.943343
[22] Naseem, I.; Togneri, R.; Bennamoun, M., Linear regression for face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 11, 2106-2112, (2010) · doi:10.1109/TPAMI.2010.128
[23] Wright, J.; Yang, A. Y.; Ganesh, A.; Sastry, S. S.; Ma, Y., Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 2, 210-227, (2009) · doi:10.1109/TPAMI.2008.79
[24] Wagner, A.; Wright, J.; Ganesh, A.; Zhou, Z.; Mobahi, H.; Ma, Y., Toward a practical face recognition system: robust alignment and illumination by sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2, 372-386, (2012) · doi:10.1109/TPAMI.2011.112
[25] Zhang, L.; Yang, M.; Feng, X.; Ma, Y.; Zhang, D., Collaborative representation based classification for face recognition
[26] Basri, R.; Jacobs, D. W., Lambertian reflectance and linear subspaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 2, 218-233, (2003) · doi:10.1109/tpami.2003.1177153
[27] Ding, S.; Zhang, N.; Xu, X.; Guo, L.; Zhang, J., Deep extreme learning machine and its application in EEG classification, Mathematical Problems in Engineering, 2015, (2015) · Zbl 1394.68282 · doi:10.1155/2015/129021
[28] Luo, H.; Tang, Y. Y.; Yang, L., Subspace learning via local probability distribution for hyperspectral image classification, Mathematical Problems in Engineering, 2015, (2015) · Zbl 1395.94052 · doi:10.1155/2015/145136
[29] Shi, Z., A weighted block dictionary learning algorithm for classification, Mathematical Problems in Engineering, 2016, (2016) · Zbl 1400.68182 · doi:10.1155/2016/3824027
[30] Zhao, W.; Chellappa, R., Robust Face Recognition Using Symmetric Shape-From-Shading, (1999), Maryland, Md, USA: Computer Vision Laboratory, Center for Automation Research, University of Maryland, Maryland, Md, USA
[31] Georghiades, A. S.; Belhumeur, P. N.; Kriegman, D. J., From few to many: illumination cone models for face recognition under variable lighting and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 6, 643-660, (2001) · doi:10.1109/34.927464
[32] Lee, K.-C.; Ho, J.; Kriegman, D. J., Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 5, 684-698, (2005) · doi:10.1109/TPAMI.2005.92
[33] Donoho, D. L., For most large underdetermined systems of linear equations the minimal \(L_1\)-norm solution is also the sparsest solution, Communications on Pure and Applied Mathematics, 59, 6, 797-829, (2006) · Zbl 1113.15004 · doi:10.1002/cpa.20132
[34] Cand\`es, E. J.; Romberg, J. K.; Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics, 59, 8, 1207-1223, (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124
[35] Candes, E. J.; Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE Transactions on Information Theory, 52, 12, 5406-5425, (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[36] Boyd, S.; Vandenberghe, L., Convex Optimization, (2004), Cambridge University Press · Zbl 1058.90049
[37] Martinez, A., The ar face database, CVC Technical Report Issue: 24, (1998), CVC
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.