×

Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect. (English) Zbl 1492.92067

Summary: The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a discrete-time Bazykin-Berezovskaya prey-predator model. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. Further, for a better representation of the study, the complex dynamics of the model are investigated theoretically and numerically using MatcotM, which is a Matlab package. Some graphical representations of the model are presented to verify the obtained results. The outcome of the study reveals that the model undergoes multiple bifurcations including period-doubling, Neimark-Sacker, and strong resonance bifurcations.

MSC:

92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations

Software:

MatContM; MatcotM
Full Text: DOI

References:

[1] Lotka, A. J., Elements of physical biology, Nature, 116, 461 (1925) · JFM 51.0416.06
[2] Lotka, A. J., Fluctuations in the abundance of a species considered mathematically, Nature, 119, 2983, 12 (1927)
[3] Bernard, L. L., Allee. Animal aggregations (book review), Soc. Forces, 11, 1, 282 (1932)
[4] Prokopy, R. J.; Roitberg, B. D., Joining and avoidance behavior in nonsocial insects, Annu. Rev. Entomol., 46, 1, 631-665 (2001)
[5] Stephens, P. A.; Sutherland, W. J., Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14, 10, 401-405 (1999)
[6] Taylor, C. M.; Hastings, A., ALlee effects in biological invasions, Ecol. Lett., 8, 8, 895-908 (2005)
[7] Wittmer, H. U.; Sinclair, A. R.; McLellan, B. N., The role of predation in the decline and extirpation of woodland caribou, Oecologia, 144, 2, 257-267 (2005)
[8] Morgan, M. T.; Wilson, W. G.; Knight, T. M., Plant population dynamics, pollinator foraging, and the selection of self-fertilization, Am. Nat., 166, 2, 169-183 (2005)
[9] Saunders, M. C., Complex population dynamics: A theoretical/empirical synthesis, Environ. Entomol., 35, 4, 1139 (2006)
[10] Koppel, J. V.D.; Rietkerk, M., Herbivore regulation and irreversible vegetation change in semi-arid grazing systems, Oikos, 90, 2, 253-260 (2000)
[11] Bazykin, A. D., (Nonlinear Dynamics of Interacting Populations. Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science Series A, vol. 11 (1998)), 1-216
[12] Zu, J., Global qualitative analysis of a predator-prey system with Allee effect on the prey species, Math. Comput. Simulation, 94, 33-54 (2013) · Zbl 1499.92084
[13] Ngondiep, E., A robust numerical two-level second-order explicit approach to predict the spread of covid-2019 pandemic with undetected infectious cases, J. Comput. Appl. Math., 403, Article 113852 pp. (2022) · Zbl 1481.92006
[14] Zu, J.; Mimura, M., The impact of Allee effect on a predator-prey system with holling II functional response, Appl. Math. Comput., 217, 7, 3542-3556 (2010) · Zbl 1202.92088
[15] Wang, Y.; Abdeljawad, T.; Din, A., Modeling the dynamics of stochastic norovirus epidemic model with time-delay, Fractals (2022) · Zbl 1498.92270
[16] Owolabi, K.; Karaagac, B.; Baleanu, D., Pattern formation in superdiffusion predator-prey-like problems with integer- and noninteger-order derivatives, Math. Methods Appl. Sci., 44, 5, 4018-4036 (2021) · Zbl 1475.35360
[17] Islam, M. A.I., Modeling the impact of campaign program on the prevalence of anemia in children under five, J. Math. Anal. Model., 2, 3, 29-40 (2021)
[18] Allegretti, S.; Bulai, I. M.; Marino, R.; Menandro, M. A.; Parisi, K., Vaccination effect conjoint to fraction of avoided contacts for a sars-cov-2 mathematical model, Math. Model. Numer. Simulat. Appl., 1, 2, 56-66 (2021)
[19] Naik, P. A.; Zu, J.; Ghoreishi, M., Stability analysis and approximate solution of SIR epidemic model with Crowley-Martin type functional response and holling type-II treatment rate by using homotopy analysis method, J. Appl. Anal. Comput., 10, 4, 1482-1515 (2020) · Zbl 1455.34039
[20] Naik, P. A.; Zu, J.; Ghoreishi, M., Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method, Chaos Solitons Fractals, 131, Article 109500 pp. (2020) · Zbl 1495.92094
[21] Dave, D. D.; Jha, B. K., On finite element estimation of calcium advection diffusion in a multipolar neuron, J. Eng. Math., 128, 11 (2021) · Zbl 1487.76118
[22] Yavuz, M.; Bonyah, E., New approaches to the fractional dynamics of schistosomiasis disease model, Physica A, 525, 373-393 (2019) · Zbl 07565786
[23] Yavuz, M.; Sene, N., Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fract. Fract., 4, 3, 35 (2020)
[24] Naik, P. A.; Zu, J.; Owolabi, K., Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A, 545, Article 123816 pp. (2020)
[25] Yavuz, M., European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels, Numer. Methods Partial Differ. Equ., 38, 3, 434-456 (2022) · Zbl 1535.91036
[26] Naik, P. A., Global dynamics of a fractional-order SIR epidemic model with memory, Int. J. Biomath., 13, 8, Article 2050071 pp. (2020) · Zbl 1461.92116
[27] Naik, P. A.; Ghoreishi, M.; Zu, J., Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method, Int. J. Numer. Anal. Model., 19, 1, 52-84 (2022) · Zbl 1513.92083
[28] Hammouch, Z.; Yavuz, M.; Ozdemir, N., Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Numer. Simulat. Appl., 1, 1, 11-23 (2021)
[29] Ozkose, F.; Yavuz, M.; Senel, M. T.; Habbireeh, R., Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, Chaos Solitons Fractals, 157, Article 111954 pp. (2022)
[30] Naik, P. A.; Yavuz, M.; Qureshi, S.; Zu, J.; Townley, S., Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, Eur. Phys. J. Plus, 135, 10, 795 (2020)
[31] Rehman, A.; Singh, R.; Abdeljawad, T.; Okyere, E.; Guran, L., Modeling, analysis and numerical solution to malaria fractional model with temporary immunity and relapse, Adv. Differential Equations, 2021, 390 (2021) · Zbl 1494.92152
[32] Ozkose, F.; Senel, M. T.; Habbireeh, R., Fractional-order mathematical modelling of cancer cells-cancer stem cells-immune system interaction with chemotherapy, Math. Model. Numer. Simulat. Appl., 1, 2, 67-83 (2021)
[33] Yavuz, M.; Ozdemir, N., Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel, Discrete Cont. Dyn.-S, 13, 3, 995-1006 (2020) · Zbl 1442.35532
[34] M. Aslam, R. Murtaza, T. Abdeljawad, A. Khan, H. Khan, H. Gulzar, A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel, Adv. Differential Equations 2021 (1) 1-15. · Zbl 1494.92123
[35] Owolabi, K.; Pindza, E.; Atangana, A., Analysis and pattern formation scenarios in the superdiffusive system of predation described with Caputo operator, Chaos Solitons Fractals, 152, 399, Article 111468 pp. (2021) · Zbl 1506.35271
[36] Joshi, H.; Jha, B. K., Chaos of calcium diffusion in parkinson’s infectious disease model and treatment mechanism via hilfer fractional derivative, Math. Model. Numer. Simulat. Appl., 1, 2, 84-94 (2021)
[37] Naik, P. A.; Owolabi, K.; Yavuz, M.; Zu, J., Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, 140, Article 110272 pp. (2020) · Zbl 1495.92036
[38] Ghori, M. B.; Naik, P. A.; Zu, J.; Eskandari, Z.; Naik, M., Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Methods Appl. Sci., 45, 7, 3666-3688 (2022) · Zbl 1525.92068
[39] Joshi, H.; Jha, B. K., On a reaction-diffusion model for calcium dynamics in neurons with Mittag-Leffler memory, Eur. Phys. J. Plus, 136, 623 (2021)
[40] Naik, P. A.; Eskandari, Z.; Shahraki, H. E., Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Math. Model. Numer. Simulat. Appl., 1, 2, 95-101 (2021)
[41] He, Z.; Lai, X., Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Anal. Real, 12, 1, 403-417 (2011) · Zbl 1202.93038
[42] Naik, P. A.; Eskandari, Z.; Avazzadeh, Z.; Zu, J., Multiple bifurcations of a discrete-time prey-predator model with mixed functional response, Int. J. Bifurcation Chaos, 32, 4, Article 2250050 pp. (2022) · Zbl 1489.92123
[43] Chen, B.; Chen, J., Complex dynamic behaviors of a discrete predator-prey model with stage structure and harvesting, Int. J. Biomath., 10, 1, Article 1750013 pp. (2017) · Zbl 1366.92101
[44] Eskandari, Z.; Alidousti, J.; Avazzadeh, Z.; Machado, J. A.T., Dynamics and bifurcations of a discrete-time prey-predator model with Allee effect on the prey population, Ecol. Complex., 48, 7, Article 100962 pp. (2021)
[45] Eskandari, Z.; Alidousti, J.; Ghaziani, R. K., Codimension-one and -two bifurcations of a three-dimensional discrete game model, Int. J. Bifurcation Chaos, 31, 02, Article 2150023 pp. (2021) · Zbl 1462.39014
[46] Pal, S.; Sasmal, S. K.; Pal, N., Chaos control in a discrete-time predator-prey model with weak Allee effect, Int. J. Biomath., 11, 7, Article 1850089 pp. (2018) · Zbl 1401.37096
[47] Kartal, S.; Gurcan, F., Global behaviour of a predator-prey like model with piecewise constant arguments, J. Biol. Dyn., 9, 1, 159-171 (2015) · Zbl 1448.92207
[48] Din, Q., Controlling chaos in a discrete-time prey-predator model with Allee effects, Int. J. Dyn. Cont., 6, 2, 858-872 (2018)
[49] Yousef, A.; Thirthar, A. A.; Alaoui, A. L.; Panja, P.; Abdeljawad, T., The hunting cooperation of a predator under two prey’s competition and fear-effect in the prey-predator fractional-order model, AIMS Math., 7, 4, 5463-5479 (2022)
[50] Elsadany, A. A.; Din, Q.; Salman, S. M., Qualitative properties and bifurcations of discrete-time Bazykin-Berezovskaya predator-prey model, Int. J. Biomath., 13, 06, Article 2050040 pp. (2020) · Zbl 1462.37100
[51] Kuznetsov, Y. A.; Meijer, H. G., Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues, SIAM J. Sci. Comput., 26, 6, 1932-1954 (2005) · Zbl 1080.37056
[52] Kuznetsov, Y. A.; Meijer, H. G., Numerical Bifurcation Analysis of Maps: From Theory to Software (2019), Cambridge University Press · Zbl 1425.37002
[53] Sebdani, R. M.; Eskandari, Z., Numerical detection and analysis of strong resonance bifurcations with a reflection symmetry and some applications in economics and neural networks, Int. J. Bifurcation Chaos, 30, 07, Article 2050100 pp. (2020) · Zbl 1448.37108
[54] Govaerts, W.; Ghaziani, R. K.; Kuznetsov, Y. A.; Meijer, H. G., Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci. Comput., 29, 6, 2644-2667 (2007) · Zbl 1155.65397
[55] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, 112 (2013), Springer Science and Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.