×

3D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing. (English) Zbl 1167.76337

Summary: The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An implicit large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters \((\alpha _{b}, \alpha _{s})\) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Rayleigh, Lord: Investigation of the equilibrium of an incompressible heavy fluid of variable density, Proc. lond. Math. soc. 14, 170-177 (1884) · JFM 15.0848.02 · doi:10.1112/plms/s1-14.1.170
[2] Taylor, G. I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I, Proc. R. Soc. lond. A 201, 192-196 (1950) · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[3] Andrews, M. J.; Spalding, D. B.: A simple experiment to investigate two-dimensional mixing by Rayleigh – Taylor instability, Phys. fluids 2, 922-927 (1990)
[4] Wunsch, C.; Ferrari, R.: Vertical mixing energy and the general circulation of oceans, Annu. rev. Fluid mech. 36, 281-314 (2004) · Zbl 1125.86313 · doi:10.1146/annurev.fluid.36.050802.122121
[5] Adkins, J. F.; Mcintyre, K.; Schrag, D. P.: The salinity temperature and \(\delta 18\) O of the glacial deep ocean, Science 298, 1769-1773 (2002)
[6] Veynante, D.; Vervisch, L.: Turbulent combustion modeling, Prog. energy combustion sci. 28, 193-266 (2002)
[7] Veynante, D.; Trouvé, A.; Bray, K. N. C.; Mantel, T.: Gradient counter-gradient scalar transport in turbulent premixed flames, J. fluid mech. 332, 263-293 (1997) · Zbl 0900.76738
[8] Britter, R. E.; Hanna, S. R.: Flow and dispersion in urban areas, Annu. rev. Fluid mech. 35, 469-496 (2003) · Zbl 1039.76070 · doi:10.1146/annurev.fluid.35.101101.161147
[9] Lindl, J. D.: Inertial confinement fusion: the quest for ignition and energy gain using indirect drive, (1998)
[10] Nakai, S.; Takabe, H.: Principles of inertial confinement fusion-physics of implosion and the concept of inertial fusion energy, Rep. prog. Phys. 59, 1071-1131 (1996)
[11] Gull, S. F.: The X-ray optical and radio properties of Young supernova remnants, R. astron. Soc. mon. Not. 171, 263-278 (1975)
[12] Colgate, S. A.; White, R. H.: The hydrodynamic behavior of supernova explosions, Astrophys. J. 143, 626-681 (1966)
[13] Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, (1981) · Zbl 0142.44103
[14] Haan, S. W.: Onset of nonlinear saturation for Rayleigh – Taylor growth in the presence of a full spectrum of modes, Phys. rev. A 39, 5812-5825 (1989)
[15] Gonchorov, V. N.: Analytical model of nonlinear single-mode classical Rayleigh – Taylor instability at arbitrary atwood numbers, Phys. rev. Lett., 134502-1-134502-4 (2002)
[16] Anuchina, N. N.; Kucherenko, Y. A.; Neuvazhaev, V. E.; Ogibina, V. N.; Shibarshov, L. I.; Yakovlev, V. G.: Turbulent mixing at an accelerating interface between liquids of different densities, Izv akad nauk SSSR mekh zhidk gaza 6, 157-160 (1978)
[17] Youngs, D. L.: Numerical simulation of turbulent mixing by Rayleigh – Taylor instability, Physica D 12, 32-44 (1984)
[18] Ramaprabhu, P.; Andrews, M. J.: On the initialization of Rayleigh – Taylor simulations, Phys. fluids 16, L59-L62 (2004) · Zbl 1186.76439
[19] Ramaprabhu, P.; Dimonte, G.; Andrews, M. J.: A numerical study on the influence of initial perturbations on the turbulent Rayleigh – Taylor instability, J. fluid mech. 436, 285-319 (2005) · Zbl 1122.76035 · doi:10.1017/S002211200500488X
[20] Dimonte, G.; Youngs, D. L.; Dimits, A.; Weber, S.; Marinak, M.; Wunsch, S.; Garasi, C.; Robinson, A.; Andrews, M. J.; Ramaprabhu, P.; Calder, A. C.; Fryxell, B.; Biello, J.; Dursi, L.; Macneice, P.; Olson, K.; Ricker, P.; Rosner, R.; Timmes, F.; Tufo, H.; Young, Y. N.; Zingale, M.: A comparative study of the turbulent Rayleigh – Taylor (RT) instability using high-resolution 3D numerical simulations: the alpha-group collaboration, Phys. fluids 16, 1668-1693 (2004) · Zbl 1186.76143
[21] Youngs, D. L.: Numerical simulation of Rayleigh – Taylor and richtmeyer – Meshkov instabilities, Laser. part. Beams 12, 725-750 (1994)
[22] Cabot, W. H.; Cook, A. W.: Reynolds number effects on Rayleigh – Taylor instability with possible implications for type-ia supernovae, Nat. phys. 2, 562-568 (2006)
[23] Young, Y. N.; Tufo, H.; Dubey, A.; Rosner, R.: On the miscible Rayleigh – Taylor instability: two and three dimensions, J. fluid mech. 447, 377-408 (2001) · Zbl 0999.76056 · doi:10.1017/S0022112001005870
[24] Glimm, J.; Grove, J. W.; Li, X. L.; Oh, W.; Sharp, D. H.: A critical analysis of Rayleigh – Taylor growth rates, J. comput. Phys. 169, 652-677 (2001) · Zbl 1011.76057 · doi:10.1006/jcph.2000.6590
[25] A. Banerjee, W.N. Kraft, M.J. Andrews, Detailed measurements of a Rayleigh – Taylor mixing layer from small to intermediate Atwood Numbers, J. Fluid Mech., 2008. · Zbl 1205.76006
[26] Ramaprabhu, P.; Andrews, M. J.: Experimental investigation of Rayleigh – Taylor mixing at small atwood numbers, J. fluid mech. 502, 233-271 (2004) · Zbl 1067.76518 · doi:10.1017/S0022112003007419
[27] Dimonte, G.; Schneider, M.: Density ratio dependence of Rayleigh – Taylor mixing for sustained and impulsive acceleration histories, Phys. fluids 12, 304-321 (2000) · Zbl 1149.76361 · doi:10.1063/1.870309
[28] Andrews, M. J.: Accurate computation of convective transport in transient two-phase flow, Int. J. Numer. method. Fluids 21, 205-222 (1995) · Zbl 0840.76045 · doi:10.1002/fld.1650210303
[29] M.J. Andrews, Turbulent Mixing by Rayleigh – Taylor Instability, Ph.D. Thesis, Imperial College of Science and Technology, London, 1986.
[30] Patankar, S. V.: Numer. heat trans. Fluid flow, (1980) · Zbl 0521.76003
[31] Van Leer, B.: Towards the ultimate conservative difference scheme IV. A new approach to numerical convection, J. comput. Phys. 23, 276-299 (1977) · Zbl 0339.76056 · doi:10.1016/0021-9991(77)90095-X
[32] Robinson, A. C.; Swegle, J. W.: Acceleration instability in elastic – plastic solids II. Analytical techniques, J. appl. Phys. 66, 2859-2872 (1989)
[33] Miles, J. W.; Dienes, J. K.: Taylor instability in a viscous fluid, Phys. fluids 9, 2518-2519 (1966)
[34] Ristorcelli, J. R.; Clark, T. T.: Rayleigh – Taylor turbulence: self-similar analysis and direct numerical simulations, J. fluid mech. 507, 213-253 (2004) · Zbl 1134.76364 · doi:10.1017/S0022112004009012
[35] Sharp, D. H.: An overview of Rayleigh – Taylor instability, Physica D 12, 3-10 (1984) · Zbl 0577.76047 · doi:10.1016/0167-2789(84)90510-4
[36] Cook, A. W.; Dimotakis, P.: Transition stages of Rayleigh – Taylor instability between miscible fluids, J. fluid mech. 443, 69-99 (2001) · Zbl 1015.76037 · doi:10.1017/S0022112001005377
[37] Read, K.: Experimental investigation of turbulent mixing by Rayleigh – Taylor instability, Physica D 12, 45-58 (1984)
[38] Danckwerts, P. V.: The definition and measurement of some characteristics of mixtures, Appl. sci. Res. 3, 279-296 (1952)
[39] Wilson, P. N.; Andrews, M. J.: Spectral measurements of Rayleigh – Taylor mixing at low-atwood number, Phys. fluids A 14, No. 3, 938-945 (2002)
[40] D.L. Youngs, Application of MILES to Rayleigh – Taylor and Richtmyer – Meshkov mixing, 16th AIAA Computational Fluid Dynamics Conference, 2003, Paper No. AIAA 2003 – 4102.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.