×

Theoretical analysis of Rayleigh-Taylor instability on a spherical droplet in a gas stream. (English) Zbl 1481.76245

Summary: A linear analysis of the Rayleigh-Taylor (R-T) instability on a spherical viscous liquid droplet in a gas stream is presented. Different from the most previous studies in which the external acceleration is usually assumed to be radial, the present study considers a unidirectional acceleration acting on a spherical droplet with arbitrary initial disturbances and therefore can provide insights into the influence of R-T instability on the atomization of spherical droplets. A general recursion relation coupling different spherical modes is derived and two physically prevalent limiting cases are discussed. In the limiting case of inviscid droplet, the critical Bond numbers to excite the instability and the growth rates for a given Bond number are obtained by solving two eigenvalue problems. In the limiting case of large droplet acceleration, different spherical modes are asymptotically decoupled and an explicit dispersion relation is derived. For given Bond number and Ohnesorge numbers, the critical size of stable droplet, the most-unstable mode and its corresponding growth rate are determined theoretically.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76E17 Interfacial stability and instability in hydrodynamic stability
Full Text: DOI

References:

[1] Dec, J. E., Advanced compression-ignition engines-understanding the in-cylinder processes, Proc. Combust. Inst., 32, 2727-2742 (2009)
[2] Reitz, R. D., Directions in internal combustion engine research, Combust. Flame, 160, 1-8 (2013)
[3] Shinjo, J.; Umemura, A., Detailed simulation of primary atomization mechanisms in diesel jet sprays (isolated identification of liquid jet tip effects), Proc. Combust. Inst., 33, 2089-2097 (2011)
[4] Guildenbecher, D.; Lopez-Rivera, C.; Sojka, P., Secondary atomization, Exp. Fluids, 46, 371-402 (2009)
[5] Wang, Z.; Dai, X.; Li, F.; Li, Y.; Lee, C.-F.; Wu, H., Nozzle internal flow and spray primary breakup with the application of closely coupled split injection strategy, Fuel, 228, 187-196 (2018)
[6] Hsiang, L. P.; Faeth, G. M., Near-limit drop deformation and secondary breakup, Int. J. Multiph. Flow, 18, 635-652 (1992) · Zbl 1144.76394
[7] Hsiang, L. P.; Faeth, G. M., Drop properties after secondary breakup, Int. J. Multiph. Flow, 19, 721-735 (1993) · Zbl 1144.76395
[8] Hwang, S.; Liu, Z.; Reitz, R. D., Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops, At. Sprays, 6, 353-376 (1996)
[9] Zhang, Z.; Zhang, P., Cross-impingement and combustion of sprays in high-pressure chamber and opposed-piston compression ignition engine, Appl. Therm. Eng., 144, 137-146 (2018)
[10] Joseph, D. D.; Belanger, J.; Beavers, G. S., Breakup of a liquid drop suddenly exposed to a high-speed airstream, Int. J. Multiph. Flow, 25, 1263-1303 (1999) · Zbl 1137.76623
[11] Lee, C. S.; Reitz, R. D., Effect of liquid properties on the breakup mechanism of high-speed liquid drops, At. Sprays, 11, 1-19 (2001)
[12] Arnett, W. D.; Bahcall, J. N.; Kirshner, R. P.; Woosley, S. E., Supernova 1987A, Annu. Rev. Astron. Astrophys., 27, 629-700 (1989)
[13] Miller, C. H.; Tang, W.; Finney, M. A.; McAllister, S. S.; Forthofer, J. M.; Gollner, M. J., An investigation of coherent structures in laminar boundary layer flames, Combust. Flame, 181, 123-135 (2017)
[14] Ramaprabhu, P.; Andrews, M., Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers, J. Fluid Mech., 502, 233-271 (2004) · Zbl 1067.76518
[15] Rayleigh, L., Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc., 14, 170-177 (1883) · JFM 15.0848.02
[16] Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, I. Proc. R. Soc. Lond. Ser. A., 201, 192-196 (1950) · Zbl 0038.12201
[17] Bellman, R.; Pennington, R. H., Effects of surface tension and viscosity on Taylor instability, Q. J. Appl. Math., 12, 151 (1954) · Zbl 0057.41503
[18] McGarry, J. P.; Ahmed, K. A., Flame-turbulence interaction of laminar premixed deflagrated flames, Combust. Flame, 176, 439-450 (2017)
[19] Ramaprabhu, P.; Dimonte, G.; Andrews, M., A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability, J. Fluid Mech., 536, 285-320 (2005) · Zbl 1122.76035
[20] Mikaelian, K. O., Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells, Phys. Rev. A, 42, 3400-3420 (1990)
[21] Plesset, M. S.; Prosperetti, A., Bubble dynamics and cavitation, Annu. Rev. Fluid Mech., 9, 145-185 (1977) · Zbl 0418.76074
[22] Terrones, G.; Carrara, M. D., Rayleigh-Taylor instability at spherical interfaces between viscous fluids: fluid/vacuum interface, Phys. Fluids, 27, Article 054105 pp. (2015)
[23] Harper, E. Y.; Grube, G. W.; Chang, I. D., On the breakup of accelerating liquid drops, J. Fluid Mech., 52, 565-591 (1972) · Zbl 0245.76040
[24] Simpkins, P. G.; Bales, E. L., Water-drop response to sudden accelerations, J. Fluid Mech., 55, 629-639 (1972)
[25] Miles, J. W., On the generation of surface waves by shear flows part 3. Kelvin-Helmholtz instability, J. Fluid Mech., 6, 583-598 (1959) · Zbl 0090.42102
[26] Lamb, H., Hydrodynamics (1932), Cambridge University Press · JFM 26.0868.02
[27] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Clarendon Press: Clarendon Press Oxford · Zbl 0142.44103
[28] Adou, A. H.E.; Tuckerman, L. S., Faraday instability on a sphere: floquet analysis, J. Fluid Mech., 805, 591-610 (2016) · Zbl 1455.76049
[29] Kumar, K.; Tuckerman, L. S., Parametric instability of the interface between two fluids, J. Fluid Mech., 279, 49-68 (1994) · Zbl 0823.76026
[30] Donnelly, T.; Hogan, J.; Mugler, A.; Schommer, N.; Schubmehl, M.; Bernoff, A. J., An experimental study of micron-scale droplet aerosols produced via ultrasonic atomization, Phys. Fluids, 16, 2843-2851 (2004) · Zbl 1186.76147
[31] Lang, R. J., Ultrasonic atomization of liquids, J. Acoust. Soc. Am., 34, 6-8 (1962)
[32] Liu, F.; Kang, N.; Li, Y.; Wu, Q., Experimental investigation on the atomization of a spherical droplet induced by Faraday instability, Exp. Therm. Fluid Sci., 100, 311-318 (2019)
[33] Liu, F.; Kang, N.; Li, Y.; Wu, Q., Experimental investigation on the spray characteristics of a droplet under sinusoidal inertial force, Fuel, 226, 156-162 (2018)
[34] James, A.; Vukasinovic, B.; Smith, M. K.; Glezer, A., Vibration-induced drop atomization and bursting, J. Fluid Mech, 476, 1-28 (2003) · Zbl 1163.76306
[35] Copson, E. T., Asymptotic Expansions (2004), Cambridge University Press · Zbl 1096.41001
[36] Plesset, M. S.; Whipple, C. G., Viscous effects in Rayleigh-Taylor instability, Phys. Fluids, 17, 1-7 (1974) · Zbl 0282.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.