×

A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. (English) Zbl 1462.65141

Summary: Multiresolution-based mesh adaptivity using biorthogonal wavelets has been quite successful with finite volume solvers for compressible fluid flow. The extension of the multiresolution-based mesh adaptation concept to high-order discontinuous Galerkin discretization can be performed using multiwavelets, which allow for higher-order vanishing moments, while maintaining local support. An implementation for scalar one-dimensional conservation laws has already been developed and tested. In the present paper we extend this strategy to systems of equations, in particular to the equations governing inviscid compressible flow.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65T60 Numerical methods for wavelets
76N06 Compressible Navier-Stokes equations
35Q31 Euler equations

Software:

HE-E1GODF
Full Text: DOI

References:

[1] Alpert, B.: A class of bases in \[L^2\] L2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24, 246-262 (1993) · Zbl 0764.42017 · doi:10.1137/0524016
[2] Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182, 149-190 (2002) · Zbl 1015.65046 · doi:10.1006/jcph.2002.7160
[3] Anderson, J.D.: Fundamentals of Aerodynamics. McGraw-Hill, NY (2007)
[4] Archibald, R., Fann, G., Shelton, W.: Adaptive discontinuous Galerkin methods in multiwavelets bases. Appl. Numer. Math. 61, 879-890 (2011) · Zbl 1216.65126 · doi:10.1016/j.apnum.2011.02.005
[5] Bacry, E., Mallat, S., Papanicolaou, G.: A wavelet based space-time adaptive numerical method for partial differential equations. Math. Model. Numer. Anal. 26, 793-834 (1992) · Zbl 0768.65062
[6] Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484-512 (1984) · Zbl 0536.65071 · doi:10.1016/0021-9991(84)90073-1
[7] Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64-84 (1989) · Zbl 0665.76070 · doi:10.1016/0021-9991(89)90035-1
[8] Bramkamp, F., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comput. Phys. 197, 460-490 (2004) · Zbl 1059.76039 · doi:10.1016/j.jcp.2003.12.005
[9] Calle, J.L.D., Devloo, P.R.B., Gomes, S.M.: Wavelets and adaptive grids for the discontinuous Galerkin method. Numer. Algorithms 39, 143-154 (2005) · Zbl 1068.65118 · doi:10.1007/s11075-004-3626-9
[10] Chen, J., Shi, Z.: Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws. Acta Mech. Sinica 22, 84-92 (2006) · Zbl 1200.76127 · doi:10.1007/s10409-005-0079-x
[11] Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90-113 (1989) · Zbl 0677.65093 · doi:10.1016/0021-9991(89)90183-6
[12] Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199-244 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[13] Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485-560 (1992) · Zbl 0776.42020 · doi:10.1002/cpa.3160450502
[14] Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003) · Zbl 1038.65151
[15] Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241), 183-225 (2003) · Zbl 1010.65035 · doi:10.1090/S0025-5718-01-01391-6
[16] Dahmen, W.: Wavelet methods for PDEs—some recent developments. J. Comput. Appl. Math. 128, 133-185 (2001) · Zbl 0974.65101 · doi:10.1016/S0377-0427(00)00511-2
[17] Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[18] Gerhard, N., Müller, S.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case. Comput. Appl. Math. (2014). doi:10.1007/s40314-014-0134-y · Zbl 1372.65271
[19] Gottschlich-Müller, B., Müller, S.: Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In: Fey, M., Jeltsch, R (eds.) Hyperbolic Problems: Theory, Numerics, applications, pp. 385-394. Birkhäuser (1999) · Zbl 0929.65081
[20] Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205-1256 (1996) · Zbl 0861.65130
[21] Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235-269 (1983) · Zbl 0565.65049 · doi:10.1016/0021-9991(83)90066-9
[22] Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12, 153-192 (1993) · Zbl 0777.65004 · doi:10.1016/0168-9274(93)90117-A
[23] Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319-338 (1994) · Zbl 0925.65151 · doi:10.1006/jcph.1994.1199
[24] Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305-1342 (1995) · Zbl 0860.65078 · doi:10.1002/cpa.3160481201
[25] Hovhannisyan, N., Müller, S., Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113-151 (2014) · Zbl 1282.65118 · doi:10.1090/S0025-5718-2013-02732-9
[26] Iacono, F., May, G., Müller, S., Schäfer, R.: A discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. In: 49th AIAA Aerospace Sciences Meeting, 2011-0200 (2011) · Zbl 1462.65141
[27] Iacono, F., May, G., Müller, S., Schäfer, R.: An adaptive multiwavelet-based DG discretization for compressible fluid flow. In: Kuzmin, A. (ed.) ICCFD 2010, Proceedings of 6th International Conference on Computational Fluid Dynamics, pp. 813-822. Springer, Berlin (2011) · Zbl 1346.76133
[28] Iacono, F.: High-order methods for convection-dominated nonlinear problems using multilevel techniques. Ph.D. thesis, RWTH Aachen University (2011)
[29] Jouhaud, J.C., Montagnac, M., Tourrette, L.: A multigrid adaptive mesh refinement strategy for 3D aerodynamic design. Int. J. Numer. Methods Fluids 47, 367-385 (2005) · Zbl 1092.76040 · doi:10.1002/fld.804
[30] Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005) · Zbl 1116.76002 · doi:10.1093/acprof:oso/9780198528692.001.0001
[31] Levy, D., Puppo, G., Russo, G.: A fourth order central WENO scheme for multi-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 24, 480-506 (2002) · Zbl 1014.65079 · doi:10.1137/S1064827501385852
[32] Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674-693 (1989) · Zbl 0709.94650 · doi:10.1109/34.192463
[33] Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Sov. Fluid Dy. 4, 101-104 (1969) · doi:10.1007/BF01015969
[34] Müller, S.: Adaptive multiresolution schemes. In: Herbin, R., Kröner, D. (eds.) Proceedings of Finite Volumes for Complex Applications III, June, 24-28, 2002, Porquerolles (France), pp. 119-136. Hermes Penton Science (2002) · Zbl 1059.65513
[35] Müller, S.: Multiresolution schemes for conservation laws. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 379-408. Springer, Berlin (2009) · Zbl 1190.65131
[36] Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Springer, Berlin (2003) · Zbl 1016.76004 · doi:10.1007/978-3-642-18164-1
[37] Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, chap. 11, pp. 409-539. Springer, Berlin (2009) · Zbl 1190.65176
[38] Richtmyer, R.D.: Taylor instability in a shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297-319 (1960) · doi:10.1002/cpa.3160130207
[39] Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Ph.D. thesis, RWTH Aachen University (2011) · Zbl 0764.42017
[40] Shelton, A.B.: A multi-resolution discontinuous Galerkin method for unsteady compressible flows. Ph.D. thesis, Georgia Institute of Technology (2008)
[41] Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32-78 (1989) · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[42] Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1-31 (1978) · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2
[43] Strela, V.: Multiwavelets: theory and applications. Ph.D. thesis, Massachussettes Institute of Technology (1996) · Zbl 0851.42029
[44] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999) · Zbl 0923.76004 · doi:10.1007/978-3-662-03915-1
[45] Vuik, M.: Limiting and shock detection for discontinuous Galerkin solutions using multiwavelets. Master’s thesis, Delft Institute of Applied Mathematics, Delft University of Technology (2012) · Zbl 0573.76057
[46] Wang, Z.J. (ed.): Adaptive High-Order Methods in Computational Fluid Dynamics. World Scientific Publishing Company, Singapore (2011) · Zbl 1234.76007
[47] Woodward, P.: Trade-offs in designing explicit hydrodynamical schemes for vector computers. In: Rodrigue, G. (ed.) Parallel Computations, pp. 153-172. Academic Press, London (1982) · Zbl 1010.65035
[48] Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115-173 (1984) · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
[49] Yee, H., Sandham, N., Djomehri, M.: Low dissipative high order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199-238 (1999) · Zbl 0936.76060 · doi:10.1006/jcph.1998.6177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.