×

Hodge numbers and deformations of Fano 3-folds. (English) Zbl 1505.14089

Summary: We show that index 1 Fano 3-folds which lie in weighted Grassmannians in their total anticanonical embedding have finite automorphism group, and we relate the deformation theory of any Fano 3-fold that has a \(K3\) elephant to its Hodge theory. Combining these results with standard Gorenstein projection techniques calculates both the number of deformations and the Hodge numbers of most quasi-smooth Fano 3-folds in low codimension. This provides detailed new information for hundreds of families of Fano 3-folds.

MSC:

14J30 \(3\)-folds
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14E30 Minimal model program (Mori theory, extremal rays)

References:

[1] S. Altinok, Graded rings corresponding to polarised K3 surfaces and Fano 3 folds, PhD thesis, University of Warwick, 1998
[2] S. Altinok, G. Brown, and M. Reid, Fano 3-folds, \(K3\) surfaces and graded rings, in Topology and geometry: commemorating SISTAG, vol. 314 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2002, pp. 25-53. zbl 1047.14026; MR1941620; arxiv math/0202092 · Zbl 1047.14026
[3] D. Arapura, Vanishing theorems for V-manifolds, Proceedings of the American Mathematical Society, (1988), pp. 43-48. DOI 10.2307/2046027; zbl 0649.32009; MR0915712 · Zbl 0649.32009 · doi:10.2307/2046027
[4] R. Blache, Chern classes and Hirzebruch-Riemann-Roch theorem for coherent sheaves on complex-projective orbifolds with isolated singularities, Math. Z., 222 (1996), pp. 7-57. DOI 10.1007/BF02621857; zbl 0949.14006; MR1388002 · Zbl 0949.14006 · doi:10.1007/BF02621857
[5] J. B\"ohm and A. Fr\"uhbis-Kr\"uger, A smoothness test for higher codimensions, J. Symbolic Comput., 86 (2018), pp. 153-165. DOI 10.1016/j.jsc.2017.05.001; zbl 1388.14049; MR3725218; arxiv 1602.04522 · Zbl 1388.14049 · doi:10.1016/j.jsc.2017.05.001
[6] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), pp. 235-265. Computational algebra and number theory (London, 1993). DOI 10.1006/jsco.1996.0125; zbl 0898.68039; MR1484478 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[7] G. Brown and K. Georgiadis, Polarized Calabi-Yau 3-folds in codimension 4, Mathematische Nachrichten, 290 (2017), pp. 710-725. DOI 10.1002/mana.201600123; zbl 06717881; MR3636373; arxiv 1508.05130 · Zbl 1453.14102 · doi:10.1002/mana.201600123
[8] G. Brown and A. M. Kasprzyk, The graded ring database. Online access via http://www.grdb.co.uk/
[9] G. Brown, A. M. Kasprzyk, and M. I. Qureshi, Fano 3-folds in \(\mathbb{P}^2\times\mathbb{P}^2\) format, Tom and Jerry, Eur. J. Math., (2018), pp. 51-72. DOI 10.1007/s40879-017-0200-2; zbl 1390.14120; MR3769375; arxiv 1707.00736 · Zbl 1390.14120 · doi:10.1007/s40879-017-0200-2
[10] G. Brown, M. Kerber, and M. Reid, Fano 3-folds in codimension 4, Tom and Jerry. Part I, Compos. Math., 148 (2012), pp. 1171-1194. DOI 10.1112/S0010437X11007226; zbl 1258.14049; MR2956040; arxiv 1009.4313 · Zbl 1258.14049 · doi:10.1112/S0010437X11007226
[11] G. Brown, M. Kerber, and M. Reid, Tom and Jerry: Big Table, 2012. Linked at http://grdb.co.uk/Downloads/
[12] J.-J. Chen, J. A. Chen, and M. Chen, On quasismooth weighted complete intersections, J. Algebraic Geom., 20 (2011), pp. 239-262. DOI 10.1090/S1056-3911-10-00542-4; zbl 1260.14060; MR2762991; arxiv 0908.1439 · Zbl 1260.14060 · doi:10.1090/S1056-3911-10-00542-4
[13] C. H. Clemens, Double solids, Adv. in Math., 47 (1983), pp. 107-230. DOI 10.1016/0001-8708(83)90025-7; zbl 0509.14045; MR0690465 · Zbl 0509.14045 · doi:10.1016/0001-8708(83)90025-7
[14] A. Corti and M. Mella, Birational geometry of terminal quartic 3-folds, I, American Journal of Mathematics, 126 (2004), pp. 739-761. DOI 10.1353/ajm.2004.0026; zbl 1063.14016; MR2075480; arxiv math/0102096 · Zbl 1063.14016 · doi:10.1353/ajm.2004.0026
[15] A. Corti, A. Pukhlikov, and M. Reid, Fano \(3\)-fold hypersurfaces, in Explicit birational geometry of 3-folds, vol. 281 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2000, pp. 175-258. zbl 0960.14020; MR1798983 · Zbl 0960.14020
[16] A. Corti and M. Reid, Weighted Grassmannians, in Algebraic Geometry, de Gruyter, Berlin, 2002, pp. 141-163. zbl 1060.14071; MR1954062; arxiv math/0206011 · Zbl 1060.14071
[17] S. Coughlan and T. Ducat, Constructing Fano 3-folds from cluster varieties of rank 2. To appear in Compositio Mathematica. Preprint available online as arXiv:1811.10926, 2018 · Zbl 1453.13064
[18] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, vol. 68 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1999. zbl 0951.14026; MR1677117 · Zbl 0951.14026
[19] W. Decker, G.-M. Greuel, G. Pfister, and H. Sch\"onemann, Singular 4-1-0 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, 2016
[20] C. Di Natale, E. Fatighenti, and D. Fiorenza, Hodge theory and deformations of affine cones of subcanonical projective varieties, Journal of the London Mathematical Society, 96 (2017), pp. 524-544. DOI 10.1112/jlms.12073; zbl 1387.14022; MR3742431; arxiv 1512.00835 · Zbl 1387.14022 · doi:10.1112/jlms.12073
[21] A. Dimca, Monodromy and Betti numbers of weighted complete intersections, Topology, 24 (1985), pp. 369-374. DOI 10.1016/0040-9383(85)90009-6; zbl 0595.32011; MR0815487 · Zbl 0595.32011 · doi:10.1016/0040-9383(85)90009-6
[22] I. Dolgachev, Weighted projective varieties, in Group actions and vector fields (Vancouver, B.C., 1981), vol. 956 of Lecture Notes in Math., Springer, Berlin, 1982, pp. 34-71. zbl 0516.14014; MR0704986 · Zbl 0516.14014
[23] T. Ducat, Constructing \(\mathbb Q\)-Fano 3-folds \`a la Prokhorov & Reid, Bull. Lond. Math. Soc., 50 (2018), pp. 420-434. DOPI 10.1112/blms.12150; zbl 1393.14016; MR3829730; arxiv 1610.01773 · Zbl 1393.14016
[24] H. Flenner, Divisorenklassengruppen quasihomogener Singularit\"aten, J. Reine Angew. Math., 328 (1981), pp. 128-160. DOI 10.1515/crll.1981.328.128; zbl 0457.14001; MR0636200 · Zbl 0457.14001 · doi:10.1515/crll.1981.328.128
[25] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
[26] D. Halpern-Leistner, Lefschetz Hyperplane Theorem for stacks, 2010. arxiv 1008.0891
[27] A. R. Iano-Fletcher, Working with weighted complete intersections, in Explicit birational geometry of 3-folds, vol. 281 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2000, pp. 101-173. zbl 0960.14027; MR1798982 · Zbl 0960.14027
[28] N. O. Ilten, Versal deformations and local Hilbert schemes, J. Softw. Algebra Geom., (2012), pp. 12-16. DOI 10.2140/jsag.2012.4.12; zbl 1311.14011; MR2947667 · Zbl 1311.14011 · doi:10.2140/jsag.2012.4.12
[29] V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), pp. 516-562, 717. zbl 0363.14010; MR0463151 · Zbl 0363.14010
[30] V. A. Iskovskih, Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), pp. 506-549. zbl 0407.14016; MR0503430 · Zbl 0407.14016
[31] V. A. Iskovskikh and Y. G. Prokhorov, Fano varieties, in Algebraic geometry, V, vol. 47 of Encyclopaedia Math. Sci., Springer, Berlin, 1999, pp. 1-24. zbl 0912.14013; MR1668579 · Zbl 0912.14013
[32] Y. Kawamata, Boundedness of \(\mathbf Q\)-Fano threefolds, in Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), vol. 131 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1992, pp. 439-445. zbl 0785.14024; MR1175897 · Zbl 0785.14024
[33] I.-K. Kim, T. Okada, and J. Won, Alpha invariants of birationally rigid Fano three-folds, Int. Math. Res. Not. IMRN, (2018), pp. 2745-2800. DOI 10.1093/imrn/rnw310; zbl 1409.14073; MR3801495; arxiv 1604.00252 · Zbl 1409.14073 · doi:10.1093/i
[34] J. Koll\'ar, Y. Miyaoka, S. Mori, and H. Takagi, Boundedness of canonical \(\mathbf Q\)-Fano 3-folds, Proc. Japan Acad. Ser. A Math. Sci., 76 (2000), pp. 73-77. DOI 10.3792/pjaa.76.73; zbl 0981.14016; MR1771144 · Zbl 0981.14016 · doi:10.3792/pjaa.76.73
[35] J. Koll\'ar and S. Mori, Birational geometry of algebraic varieties, vol. 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. zbl 0926.14003; MR1658959 · Zbl 0926.14003
[36] A. G. Kuznetsov, Y. G. Prokhorov, and C. A. Shramov, Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Japan J. Math., 13 (2018), pp. 109-185. DOI 10.1007/s11537-017-1714-6; zbl 1406.14031; MR3776469; arxiv 1605.02010 · Zbl 1406.14031 · doi:10.1007/s11537-017-1714-6
[37] S. Mori, On \(3\)-dimensional terminal singularities, Nagoya Math. J., 98 (1985), pp. 43-66. DOI 10.1017/S0027763000021358; zbl 0589.14005; MR0792770 · Zbl 0589.14005 · doi:10.1017/S0027763000021358
[38] S. Mori and S. Mukai, Classification of Fano \(3\)-folds with \(B_2 \geq 2\), Manuscripta Math., 36 (1981/82), pp. 147-162. DOI 10.1007/BF01170131; zbl 0478.14033; MR0641971 · Zbl 0478.14033 · doi:10.1007/BF01170131
[39] S. A. Papadakis, Kustin-Miller unprojection with complexes, J. Algebraic Geom., 13 (2004), pp. 249-268. DOI 10.1090/S1056-3911-03-00350-3; zbl 1055.14050; MR2047698; arxiv math/0111195 · Zbl 1055.14050 · doi:10.1090/S1056-3911-03-00350-3
[40] S. A. Papadakis, The equations of type \(\rm II_1\) unprojection, J. Pure Appl. Algebra, 212 (2008), pp. 2194-2208. DOI 10.1016/j.jpaa.2008.03.016; zbl 1166.13029; MR2418166 · Zbl 1166.13029 · doi:10.1016/j.jpaa.2008.03.016
[41] T. Peternell and J. A. Wi\'sniewski, On stability of tangent bundles of Fano manifolds with \(b_2=1\), J. Algebraic Geom., 4 (1995), pp. 363-384. zbl 0837.14033; MR1311356 · Zbl 0837.14033
[42] M. Pizzato, T. Sano, and L. Tasin, Effective nonvanishing for Fano weighted complete intersections, Algebra & Number Theory, 11 (2017), pp. 2369-2395. DOI 10.2140/ant.2017.11.2369; zbl 1390.14144; MR3744360; arxiv 1703.07344 · Zbl 1390.14144 · doi:10.2140/ant.2017.11.2369
[43] Y. Prokhorov, \( \mathbb Q\)-Fano threefolds of large Fano index. I, Doc. Math., 15 (2010), pp. 843-872. https://www.elibm.org/article/10000160; zbl 1218.14031; MR2745685; arxiv 0812.1695 · Zbl 1218.14031
[44] Y. Prokhorov and M. Reid, On \(\mathbb Q\)-Fano 3-folds of Fano index 2, in Minimal models and extremal rays (Kyoto, 2011), vol. 70 of Adv. Stud. Pure Math., Math. Soc. Japan, [Tokyo], 2016, pp. 397-420. zbl 1372.14033; MR3618268 · Zbl 1372.14033
[45] V. V. Przhiyalkovski, I. A. Cheltsov, and K. A. Shramov, Fano threefolds with infinite automorphism groups, Izv. Ross. Akad. Nauk Ser. Mat., 83 (2019), pp. 226-280. DOI 10.1070/IM8834; zbl 07110607; MR3985696; arxiv 1809.09223 · Zbl 1444.14074 · doi:10.1070/IM8834
[46] V. Przyjalkowski and C. Shramov, Automorphisms of weighted complete intersections, 2019. arxiv 1905.12574 · Zbl 1511.14065
[47] G. V. Ravindra and V. Srinivas, The Grothendieck-Lefschetz theorem for normal projective varieties, J. Algebraic Geom., 15 (2006), pp. 563-590. DOI 10.1090/S1056-3911-05-00421-2; zbl 1123.14004; MR2219849; arxiv math/0511134 · Zbl 1123.14004 · doi:10.1090/S1056-3911-05-00421-2
[48] M. Reid, The moduli space of \(3\)-folds with \(K=0\) may nevertheless be irreducible, Math. Ann., 278 (1987), pp. 329-334. DOI 10.1007/BF01458074; zbl 0649.14021; MR0909231 · Zbl 0649.14021 · doi:10.1007/BF01458074
[49] M. Reid, Young person’s guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), vol. 46 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1987, pp. 345-414. zbl 0634.14003; MR0927963 · Zbl 0634.14003 · doi:n
[50] M. Reid, Graded rings and birational geometry, Proc. of algebraic geometry symposium (Kinosaki, Oct 2000), K. Ohno (Ed.), (2000), pp. 1-72
[51] M. Reid, Gorenstein in codimension 4: the general structure theory, in Algebraic geometry in east Asia-Taipei 2011, vol. 65 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 2015, pp. 201-227. zbl 1360.13036; MR3380790; arxiv 1304.5248 · Zbl 1360.13036
[52] T. Sano, On deformations of \(\mathbb Q\)-Fano 3-folds, J. Algebraic Geom., 25 (2016), pp. 141-176. DOI 10.1090/jag/672; zbl 1346.14109; MR3419958 · Zbl 1346.14109 · doi:10.1090/jag/672
[53] M. Schlessinger, On rigid singularities, Rice Univ. Studies, 59 (1973), pp. 147-162. Complex analysis, 1972 (Proc. Conf., Rice Univ., Houston, Tex., 1972), Vol. I: Geometry of singularities. zbl 0279.32006; MR0344519 · Zbl 0279.32006
[54] E. Sernesi, Deformations of algebraic schemes, vol. 334, Springer Science & Business Media, 2007. DOI 10.1007/978-3-540-30615-3; zbl 1102.14001; MR2247603 · Zbl 1102.14001 · doi:10.1007/978-3-540-30615-3
[55] J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563. zbl 0373.14007; MR0485870 · Zbl 0373.14007
[56] K. Suzuki, On Fano indices of \(\mathbb{Q} \)-Fano 3-folds, Manuscripta Math., 114 (2004), pp. 229-246. DOI 10.1007/s00229-004-0442-4; zbl 1063.14049; MR2067795; arxiv math/0210309 · Zbl 1063.14049 · doi:10.1007/s00229-004-0442-4
[57] H. Takagi, On classification of \(\mathbb Q\)-Fano 3-folds of Gorenstein index 2. I, II, Nagoya Math. J., 167 (2002), pp. 117-155, 157-216. DOI 10.1017/S0027763000025460 (pt. I); DOI 10.1017/S0027763000025472 (pt. II); zbl 1048.14022 (pt. I); zbl 1048.14023 (pt. II); MR1924722; arxiv math/9905068 · Zbl 1048.14022 · doi:10.1017/S0027763000025460
[58] R. Taylor, Type II Unprojections, Fano Threefolds and Codimension Four Constructions, PhD thesis, University of Warwick, 2019
[59] F. Tonoli, Construction of Calabi-Yau 3-folds in \(\mathbb P^6\), J. Algebraic Geom., 13 (2004), pp. 209-232. DOI 10.1090/S1056-3911-03-00371-0; zbl 1060.14060; MR2047696 · Zbl 1060.14060 · doi:10.1090/S1056-3911-03-00371-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.