×

Resonant perturbation theory of decoherence and relaxation of quantum bits. (English) Zbl 1201.81078

Summary: We describe our recent results on the resonant perturbation theory of decoherence and relaxation for quantum systems with many qubits. The approach represents a rigorous analysis of the phenomenon of decoherence and relaxation for general N-level systems coupled to reservoirs of bosonic fields. We derive a representation of the reduced dynamics valid for all times \(t\geq 0\) and for small but fixed interaction strength. Our approach does not involve master equation approximations and applies to a wide variety of systems which are not explicitly solvable.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
81P40 Quantum coherence, entanglement, quantum correlations
81Q15 Perturbation theories for operators and differential equations in quantum theory

References:

[1] G. Wendin and V. S. Shumeiko, “Quantum bits with Josephson junctions,” Low Temperature Physics, vol. 33, no. 9, pp. 724-744, 2007. · doi:10.1063/1.2780165
[2] D. Kinion and J. Clarke, “Microstrip superconducting quantum interference device radio-frequency amplifier: scattering parameters and input coupling,” Applied Physics Letters, vol. 92, no. 17, Article ID 172503, 3 pages, 2008. · doi:10.1063/1.2902173
[3] Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Reviews of Modern Physics, vol. 73, no. 2, pp. 357-400, 2001. · Zbl 1039.81514 · doi:10.1103/RevModPhys.73.357
[4] Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang, “Coherent temporal oscillations of macroscopic quantum states in a Josephson junction,” Science, vol. 296, no. 5569, pp. 889-892, 2002. · doi:10.1126/science.1069452
[5] M. H. Devoret and J. M. Martinis, “Implementing qubits with superconducting integrated circuits,” Quantum Information Processing, vol. 3, no. 1-5, pp. 163-203, 2004. · Zbl 1075.68599 · doi:10.1007/s11128-004-3101-5
[6] M. Steffen, M. Ansmann, R. McDermott, et al., “State tomography of capacitively shunted phase qubits with high fidelity,” Physical Review Letters, vol. 97, no. 5, Article ID 050502, 4 pages, 2006. · doi:10.1103/PhysRevLett.97.050502
[7] N. Katz, M. Neeley, M. Ansmann, et al., “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Physical Review Letters, vol. 101, no. 20, Article ID 200401, 4 pages, 2008. · doi:10.1103/PhysRevLett.101.200401
[8] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplifcation,” Reviews of Modern Physics, vol. 82, pp. 1155-1208, 2010. · Zbl 1205.81001 · doi:10.1103/RevModPhys.82.1155
[9] M. Merkli, I. M. Sigal, and G. P. Berman, “Decoherence and thermalization,” Physical Review Letters, vol. 98, no. 13, Article ID 130401, 2007. · Zbl 1228.82060 · doi:10.1103/PhysRevLett.98.130401
[10] M. Merkli, I. M. Sigal, and G. P. Berman, “Resonance theory of decoherence and thermalization,” Annals of Physics, vol. 323, no. 2, pp. 373-412, 2008. · Zbl 1201.81083 · doi:10.1016/j.aop.2007.04.013
[11] M. Merkli, G. P. Berman, and I. M. Sigal, “Dynamics of collective decoherence and thermalization,” Annals of Physics, vol. 323, no. 12, pp. 3091-3112, 2008. · Zbl 1164.82005 · doi:10.1016/j.aop.2008.07.004
[12] G. P. Berman, D. I. Kamenev, and V. I. Tsifrinovich, “Collective decoherence of the superpositional entangled states in the quantum Shor algorithm,” Physical Review A, vol. 71, no. 3, Article ID 032346, 5 pages, 2005. · Zbl 1227.81111 · doi:10.1103/PhysRevA.71.032346
[13] D. A. R. Dalvit, G. P. Berman, and M. Vishik, “Dynamics of open bosonic quantum systems in coherent state representation,” Physical Review A, vol. 73, no. 1, Article ID 013803, 2006. · doi:10.1103/PhysRevA.73.013803
[14] L.-M. Duan and G.-C. Guo, “Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment,” Physical Review A, vol. 57, no. 2, pp. 737-741, 1998.
[15] E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I. O. Stamatescu, Decoherence and The Appearence of a Classical World in Quantum Theory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2nd edition, 2003. · Zbl 0855.00003
[16] D. Mozyrsky and V. Privman, “Adiabatic decoherence,” Journal of Statistical Physics, vol. 91, no. 3-4, pp. 787-799, 1998. · Zbl 0946.82030 · doi:10.1023/A:1023042014131
[17] G. M. Palma, K.-A. Suominen, and A. K. Ekert, “Quantum computers and dissipation,” Proceedings of the Royal Society A, vol. 452, no. 1946, pp. 567-584, 1996. · Zbl 0870.68066 · doi:10.1098/rspa.1996.0029
[18] J. Shao, M.-L. Ge, and H. Cheng, “Decoherence of quantum-nondemolition systems,” Physical Review E, vol. 53, no. 1, pp. 1243-1245, 1996.
[19] M. Merkli, G. P. Berman, F. Borgonovi, and K. Gebresellasie, “Evolution of entanglement of two qubits interacting through local and collective environments,” Quantum Physics, preprint, http://arxiv.org/abs/1001.1144. · Zbl 1238.81032
[20] M. Merkli and S. Starr, “A resonance theory for open quantum systems with time-dependent dynamics,” Journal of Statistical Physics, vol. 134, pp. 871-898, 2009. · Zbl 1168.82018 · doi:10.1007/s10955-008-9645-5
[21] V. Bach, M. Merkli, W. Pedra, and I. M. Sigal, “Decoherence control,” in preparation.
[22] H.-P Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford, UK, 2002. · Zbl 1053.81001
[23] E. B. Davies, “Markovian master equations,” Communications in Mathematical Physics, vol. 39, no. 2, pp. 91-110, 1974. · Zbl 0294.60080 · doi:10.1007/BF01608389
[24] E. B. Davies, “Markovian master equations. II,” Mathematische Annalen, vol. 219, no. 2, pp. 147-158, 1976. · Zbl 0323.60061 · doi:10.1007/BF01351898
[25] J. Dereziński and R. Früboes, Fermi Golden Rule and Open Quantum Systems, vol. 1882 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2006. · Zbl 1130.81045
[26] V. Jak and C. A. Pillet, “From resonances to master equations,” Annales de l’Institut Henri Poincaré, vol. 67, no. 4, pp. 425-445, 1997. · Zbl 0910.60084
[27] M. Merkli, “Level shift operators for open quantum systems,” Journal of Mathematical Analysis and Applications, vol. 327, no. 1, pp. 376-399, 2007. · Zbl 1120.81060 · doi:10.1016/j.jmaa.2006.04.030
[28] J. B. Altepeter, P. G. Hadley, S. M. Wendelken, A. J. Berglund, and P. G. Kwiat, “Experimental investigation of a two-qubit decoherence-free subspace,” Physical Review Letters, vol. 92, no. 14, Article ID 147901, 4 pages, 2004. · doi:10.1103/PhysRevLett.92.147901
[29] A. Fedorov and L. Fedichkin, “Collective decoherence of nuclear spin clusters,” Journal of Physics Condensed Matter, vol. 18, no. 12, pp. 3217-3228, 2006. · doi:10.1088/0953-8984/18/12/005
[30] M. Merkli, M. Mück, and I. M. Sigal, “Instability of equilibrium states for coupled heat reservoirs at different temperatures,” Journal of Functional Analysis, vol. 243, no. 1, pp. 87-120, 2007. · Zbl 1122.81043 · doi:10.1016/j.jfa.2006.10.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.