×

A review of developments in superconducting quantum processors. (English) Zbl 1542.81244

Summary: Superconducting qubits are currently the leading platform for quantum computing and quantum information processing in general. Over the last decade, there have been rapid developments in the performance of small-scale quantum processors based on superconducting qubits, showing promise for a practical quantum processor in the coming years. These developments have taken place in terms of control and measurement techniques, connectivity, qubit architecture, and coherence performance. It has been led by novel design strategies, improvements in materials and fabrication processes, as well as advances in peripheral control electronics. In this article, we present a review of the various superconducting qubit devices, their coupling schemes, performance, and developments on the materials front.

MSC:

81P68 Quantum computation
81P65 Quantum gates
82D55 Statistical mechanics of superconductors
68Q12 Quantum algorithms and complexity in the theory of computing
81V25 Other elementary particle theory in quantum theory
81V10 Electromagnetic interaction; quantum electrodynamics
74K30 Junctions
81P15 Quantum measurement theory, state operations, state preparations
68M07 Mathematical problems of computer architecture
81Q93 Quantum control
Full Text: DOI

References:

[1] Feynman RP (2018) Simulating physics with computers. In: Feynman and computation. CRC Press, pp 133-153, 1st edn. ISBN 9780429500459
[2] Shor, PW, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev, 41, 2, 303-332, (1999) · Zbl 1005.11507
[3] Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on theory of computing, pp 212-219 · Zbl 0922.68044
[4] Zhong, H-S; Wang, H.; Deng, Y-H; Chen, M-C; Peng, L-C; Luo, Y-H; Qin, J.; Wu, D.; Ding, X.; Hu, Y., Quantum computational advantage using photons, Science, 370, 6523, 1460-1463, (2020)
[5] DiVincenzo, DP, The physical implementation of quantum computation, Fortschritte der Physik Progr Phys, 48, 9-11, 771-783, (2000) · Zbl 1071.81510
[6] Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, JC; Barends, R.; Biswas, R.; Boixo, S.; Brandao, FG; Buell, DA, Quantum supremacy using a programmable superconducting processor, Nature, 574, 7779, 505-510, (2019)
[7] Gong, M.; Wang, S.; Zha, C.; Chen, M-C; Huang, H-L; Wu, Y.; Zhu, Q.; Zhao, Y.; Li, S.; Guo, S., Quantum walks on a programmable two-dimensional 62-qubit superconducting processor, Science, 372, 6545, 948-952, (2021)
[8] Dolan, G., Offset masks for lift-off photoprocessing, Appl Phys Lett, 31, 5, 337-339, (1977)
[9] Vion, D., Course 14 Josephson quantum bits based on a cooper pair box, Les Houches, (2004) · doi:10.1016/S0924-8099(03)80038-0
[10] Büttiker, M., Zero-current persistent potential drop across small-capacitance Josephson junctions, Phys Rev B, 36, 3548-3555, (1987) · doi:10.1103/PhysRevB.36.3548
[11] Bouchiat, V.; Vion, D.; Joyez, P.; Esteve, D.; Devoret, M., Quantum coherence with a single cooper pair, Phys Scr, 1998, 165, (2006) · doi:10.1238/Physica.Topical.076a00165
[12] Nakamura, Y.; Chen, CD; Tsai, JS, Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by josephson coupling, Phys Rev Lett, 79, 2328-2331, (1997) · doi:10.1103/PhysRevLett.79.2328
[13] Nakamura, Y.; Pashkin, YA; Tsai, JS, Coherent control of macroscopic quantum states in a single-cooper-pair box, Nature, 398, 786-788, (1999) · doi:10.1038/19718
[14] Vion, D.; Aassime, A.; Cottet, A.; Joyez, P.; Pothier, H.; Urbina, C.; Esteve, D.; Devoret, MH, Manipulating the quantum state of an electrical circuit, Science, 296, 886-889, (2002) · doi:10.1126/science.1069372
[15] Shnirman, A.; Schön, G., Quantum measurements performed with a single-electron transistor, Phys Rev B Condens Matter Mater Phys, 57, 24, 15400-15407, (1998) · doi:10.1103/PhysRevB.57.15400
[16] Makhlin, Y.; Schön, G.; Shnirman, A., Josephson-junction qubits with controlled couplings, Nature, 398, 6725, 305-307, (1999) · doi:10.1038/18613
[17] Kim, Z.; Zaretskey, V.; Yoon, Y.; Schneiderman, J.; Shaw, M.; Echternach, P.; Wellstood, F.; Palmer, B., Anomalous avoided level crossings in a Cooper-pair box spectrum, Phys Rev B, 78, 14, 144506, (2008)
[18] Wallraff, A.; Schuster, DI; Blais, A.; Frunzio, L.; Huang, R-S; Majer, J.; Kumar, S.; Girvin, SM; Schoelkopf, RJ, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, 431, 7005, 162-7, (2004) · doi:10.1038/nature02851
[19] Schuster, D.; Houck, AA; Schreier, J.; Wallraff, A.; Gambetta, J.; Blais, A.; Frunzio, L.; Majer, J.; Johnson, B.; Devoret, M., Resolving photon number states in a superconducting circuit, Nature, 445, 7127, 515-518, (2007)
[20] Kim, Z.; Suri, B.; Zaretskey, V.; Novikov, S.; Osborn, KD; Mizel, A.; Wellstood, FC; Palmer, BS, Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms, Phys Rev Lett, 106, 120501, (2011) · doi:10.1103/PhysRevLett.106.120501
[21] Koch, J.; Yu, TM; Gambetta, J.; Houck, AA; Schuster, DI; Majer, J.; Blais, A.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Charge-insensitive qubit design derived from the Cooper pair box, Phys Rev A At Mol Opt Phys, 76, 4, 1-19, (2007) · doi:10.1103/PhysRevA.76.042319
[22] Suri, B.; Keane, Z.; Ruskov, R.; Bishop, LS; Tahan, C.; Novikov, S.; Robinson, J.; Wellstood, F.; Palmer, B., Observation of Autler-Townes effect in a dispersively dressed Jaynes-Cummings system, New J Phys, 15, 12, 125007, (2013)
[23] Suri, B.; Keane, Z.; Bishop, LS; Novikov, S.; Wellstood, FC; Palmer, BS, Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a Transmon qubit, Phys Rev A, 92, 6, 063801, (2015)
[24] Schuster, DI; Houck, AA; Schreier, JA; Wallraff, A.; Gambetta, JM; Blais, A.; Frunzio, L.; Majer, J.; Johnson, B.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Resolving photon number states in a superconducting circuit, Nature, 445, 515-518, (2007) · doi:10.1038/nature05461
[25] Houck, AA; Schuster, DI; Gambetta, JM; Schreier, JA; Johnson, BR; Chow, JM; Frunzio, L.; Majer, J.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Generating single microwave photons in a circuit, Nature, 449, 328-331, (2007) · doi:10.1038/nature06126
[26] Majer, J.; Chow, JM; Gambetta, JM; Koch, J.; Johnson, BR; Schreier, JA; Frunzio, L.; Schuster, DI; Houck, AA; Wallraff, A.; Blais, A.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Coupling superconducting qubits via a cavity bus, Nature, 449, 443-447, (2007) · doi:10.1038/nature06184
[27] Schreier, JA; Houck, AA; Koch, J.; Schuster, DI; Johnson, BR; Chow, JM; Gambetta, JM; Majer, J.; Frunzio, L.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Suppressing charge noise decoherence in superconducting charge qubits, Phys Rev B, 77, 180502, (2008) · doi:10.1103/PhysRevB.77.180502
[28] Nersisyan A, Sete EA, Stanwyck SW, Bestwick AJ, Reagor M, Poletto S, Alidoust N, Manenti R, Renzas RJ, Bui C, Vu K, Whyland T, Mohan Y (2019) Manufacturing low dissipation superconducting quantum processors. In: 2019 IEEE international electron devices meeting (IEDM), 31, p 113114
[29] Barends, R.; Kelly, J.; Megrant, A.; Sank, D.; Jeffrey, E.; Chen, Y.; Yin, Y.; Chiaro, B.; Mutus, J.; Neill, C.; O’Malley, P.; Roushan, P.; Wenner, J.; White, TC; Cleland, AN; Martinis, JM, Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys Rev Lett, 111, 80502, (2013) · doi:10.1103/PhysRevLett.111.080502
[30] Place, APM; Rodgers, LVH; Mundada, P.; Smitham, BM; Fitzpatrick, M.; Leng, Z.; Premkumar, A.; Bryon, J.; Vrajitoarea, A.; Sussman, S.; Cheng, G.; Madhavan, T.; Babla, HK; Le, XH; Gang, Y.; Jäck, B.; Gyenis, A.; Yao, N.; Cava, RJ; de Leon, NP; Houck, AA, New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds, Nat Commun, 12, 1779, (2021) · doi:10.1038/s41467-021-22030-5
[31] Wang, C.; Li, X.; Xu, H.; Li, Z.; Wang, J.; Yang, Z.; Mi, Z.; Liang, X.; Su, T.; Yang, C.; Wang, G.; Wang, W.; Li, Y.; Chen, M.; Li, C.; Linghu, K.; Han, J.; Zhang, Y.; Feng, Y.; Song, Y.; Ma, T.; Zhang, J.; Wang, R.; Zhao, P.; Liu, W.; Xue, G.; Jin, Y.; Yu, H., Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds, npj Quantum Inf, 8, 3, (2022) · doi:10.1038/s41534-021-00510-2
[32] Paik, H.; Schuster, DI; Bishop, LS; Kirchmair, G.; Catelani, G.; Sears, AP; Johnson, BR; Reagor, MJ; Frunzio, L.; Glazman, LI; Girvin, SM; Devoret, MH; Schoelkopf, RJ, Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture, Phys Rev Lett, 107, 24, 1-5, (2011) · doi:10.1103/PhysRevLett.107.240501
[33] Rigetti, C.; Gambetta, JM; Poletto, S.; Plourde, BL; Chow, JM; Córcoles, AD; Smolin, JA; Merkel, ST; Rozen, JR; Keefe, GA, Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms, Phys Rev B, 86, 10, 100506, (2012)
[34] Reshitnyk, Y.; Jerger, M.; Fedorov, A., 3d microwave cavity with magnetic flux control and enhanced quality factor, EPJ Quantum Technol, 3, 13, (2016) · doi:10.1140/epjqt/s40507-016-0050-8
[35] Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, RJ, An architecture for integrating planar and 3d cqed devices, Appl Phys Lett, 109, 042601, (2016) · doi:10.1063/1.4959241
[36] Leghtas, Z.; Kirchmair, G.; Vlastakis, B.; Schoelkopf, RJ; Devoret, MH; Mirrahimi, M., Hardware-efficient autonomous quantum memory protection, Phys Rev Lett, 111, 120501, (2013) · doi:10.1103/PhysRevLett.111.120501
[37] Leghtas, Z.; Kirchmair, G.; Vlastakis, B.; Devoret, MH; Schoelkopf, RJ; Mirrahimi, M., Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity, Phys Rev A, 87, 42315, (2013) · doi:10.1103/PhysRevA.87.042315
[38] Kirchmair, G.; Vlastakis, B.; Leghtas, Z.; Nigg, SE; Paik, H.; Ginossar, E.; Mirrahimi, M.; Frunzio, L.; Girvin, SM; Schoelkopf, RJ, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature, 495, 205-209, (2013) · doi:10.1038/nature11902
[39] Yurke, B.; Stoler, D., Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys Rev Lett, 57, 13-16, (1986) · doi:10.1103/PhysRevLett.57.13
[40] Nigg, SE; Paik, H.; Vlastakis, B.; Kirchmair, G.; Shankar, S.; Frunzio, L.; Devoret, MH; Schoelkopf, RJ; Girvin, SM, Black-box superconducting circuit quantization, Phys Rev Lett, 108, 240502, (2012) · doi:10.1103/PhysRevLett.108.240502
[41] Mirrahimi, M.; Leghtas, Z.; Albert, VV; Touzard, S.; Schoelkopf, RJ; Jiang, L.; Devoret, MH, Dynamically protected cat-qubits: a new paradigm for universal quantum computation, New J Phys, 16, 045014, (2014) · Zbl 1451.81177 · doi:10.1088/1367-2630/16/4/045014
[42] Ofek, N.; Petrenko, A.; Heeres, R.; Reinhold, P.; Leightas, Z.; Vlastakis, B.; Liu, Y.; Frunzio, L.; Girvin, SM; Jiang, L.; Mirrahimi, M.; Devoret, MH; Schoelkopf, RJ, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, 536, 441, (2016)
[43] Puri, S.; Boutin, S.; Blais, A., Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving, npj Quantum Inf, 3, 18, (2017) · doi:10.1038/s41534-017-0019-1
[44] Guillaud, J.; Mirrahimi, M., Repetition cat qubits for fault-tolerant quantum computation, Phys Rev X, 9, 41053, (2019) · doi:10.1103/PhysRevX.9.041053
[45] Grimm, A.; Frattini, NE; Puri, S.; Mundhada, SO; Touzard, S.; Mirrahimi, M.; Girvin, SM; Shankar, S.; Devoret, MH, Stabilization and operation of a Kerr-cat qubit, Nature, 584, 205-209, (2020) · doi:10.1038/s41586-020-2587-z
[46] Roy, T.; Kundu, S.; Chand, M.; Hazra, S.; Nehra, N.; Cosmic, R.; Ranadive, A.; Patankar, MP; Damle, K.; Vijay, R., Implementation of pairwise longitudinal coupling in a three-qubit superconducting circuit, Phys Rev Appl, 7, 054025, (2017)
[47] Roy, T.; Chand, M.; Bhattacharjee, A.; Hazra, S.; Kundu, S.; Damle, K.; Vijay, R., Multimode superconducting circuits for realizing strongly coupled multiqubit processor units, Phys Rev A, 98, 5, 052318, (2018)
[48] Roy, T.; Hazra, S.; Kundu, S.; Chand, M.; Patankar, MP; Vijay, R., Programmable superconducting processor with native three-qubit gates, Phys Rev Appl, 14, 1, 014072, (2020)
[49] Friedman, JR; Patel, V.; Chen, W.; Tolpygo, SK; Lukens, JE, Quantum superposition of distinct macroscopic states, Nature, 406, 43-46, (2000) · doi:10.1038/35017505
[50] Leggett, AJ, Macroscopic quantum systems and the quantum theory of measurement, Prog Theor Phys Suppl, 69, 80-100, (1980) · doi:10.1143/PTP.69.80
[51] Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, TP; Gustavsson, S.; Oliver, WD, A quantum engineer’s guide to superconducting qubits, Appl Phys Rev, 6, 021318, (2019) · doi:10.1063/1.5089550
[52] You, JQ; Hu, X.; Ashhab, S.; Nori, F., Low-decoherence flux qubit, Phys Rev B, 75, 140515, (2007) · doi:10.1103/PhysRevB.75.140515
[53] Yan, F.; Gustavsson, S.; Kamal, A.; Birenbaum, J.; Sears, AP; Hover, D.; Gudmundsen, TJ; Rosenberg, D.; Samach, G.; Weber, S.; Yoder, JL; Orlando, TP; Clarke, J.; Kerman, AJ; Oliver, WD, The flux qubit revisited to enhance coherence and reproducibility, Nat Commun, 7, 12964, (2016) · doi:10.1038/ncomms12964
[54] Manucharyan, VE; Koch, J.; Glazman, LI; Devoret, MH, Fluxonium: single cooper-pair circuit free of charge offsets, Science, 326, 113-116, (2009) · doi:10.1126/science.1175552
[55] Nguyen, LB; Lin, Y-H; Somoroff, A.; Mencia, R.; Grabon, N.; Manucharyan, VE, High-coherence fluxonium qubit, Phys Rev X, 9, 41041, (2019) · doi:10.1103/PhysRevX.9.041041
[56] Zhang, H.; Chakram, S.; Roy, T.; Earnest, N.; Lu, Y.; Huang, Z.; Weiss, DK; Koch, J.; Schuster, DI, Universal fast-flux control of a coherent, low-frequency qubit, Phys Rev X, 11, 11010, (2021) · doi:10.1103/PhysRevX.11.011010
[57] Somoroff A, Ficheux Q, Mencia RA, Xiong H, Kuzmin RV, Manucharyan VE (2021) Millisecond coherence in a superconducting qubit. arXiv:2103.08578
[58] Martinis, JM; Devoret, MH; Clarke, J., Energy-level quantization in the zero-voltage state of a current-biased Josephson junction, Phys Rev Lett, 55, 1543-1546, (1985) · doi:10.1103/PhysRevLett.55.1543
[59] Devoret, MH; Martinis, JM; Clarke, J., Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction, Phys Rev Lett, 55, 1908-1911, (1985) · doi:10.1103/PhysRevLett.55.1908
[60] Martinis, JM; Devoret, MH; Clarke, J., Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a josephson junction, Phys Rev B, 35, 4682-4698, (1987) · doi:10.1103/PhysRevB.35.4682
[61] Martinis, JM; Nam, S.; Aumentado, J.; Urbina, C., Rabi oscillations in a large Josephson-junction qubit, Phys Rev Lett, 89, 117901, (2002) · doi:10.1103/PhysRevLett.89.117901
[62] Blais, A.; Huang, R-S; Wallraff, A.; Girvin, SM; Schoelkopf, RJ, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation, Phys Rev A, 69, 6, 062320, (2004) · doi:10.1103/PhysRevA.69.062320
[63] Gambetta, J.; Blais, A.; Schuster, DI; Wallraff, A.; Frunzio, L.; Majer, J.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Qubit-photon interactions in a cavity: measurement-induced dephasing and number splitting, Phys Rev A At Mol Opt Phys, 74, 4, 1-14, (2006) · doi:10.1103/PhysRevA.74.042318
[64] Reed, MD; Dicarlo, L.; Johnson, BR; Sun, L.; Schuster, DI; Frunzio, L.; Schoelkopf, RJ, High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity, Phys Rev Lett, (2010) · doi:10.1103/PhysRevLett.105.173601
[65] Bishop, LS; Ginossar, E.; Girvin, SM, Response of the strongly driven Jaynes-Cummings oscillator, Phys Rev Lett, 105, 10, 3-6, (2010) · doi:10.1103/PhysRevLett.105.100505
[66] Boissonneault, M.; Gambetta, JM; Blais, A., Improved superconducting qubit readout by qubit-induced nonlinearities, Phys Rev Lett, 105, 10, 1-4, (2010) · doi:10.1103/PhysRevLett.105.100504
[67] Touzard, S.; Kou, A.; Frattini, NE; Sivak, VV; Puri, S.; Grimm, A.; Frunzio, L.; Shankar, S.; Devoret, MH, Gated conditional displacement readout of superconducting qubits, Phys Rev Lett, 122, 8, 80502, (2019) · doi:10.1103/PhysRevLett.122.080502
[68] Didier, N.; Bourassa, J.; Blais, A., Fast quantum nondemolition readout by parametric modulation of longitudinal qubit-oscillator interaction, Phys Rev Lett, 115, 20, 1-5, (2015) · doi:10.1103/PhysRevLett.115.203601
[69] Dassonneville, R.; Ramos, T.; Milchakov, V.; Planat, L.; Dumur, Foroughi F.; Puertas, J.; Leger, S.; Bharadwaj, K.; Delaforce, J.; Naud, C.; Hasch-Guichard, W.; García-Ripoll, JJ; Roch, N.; Buisson, O., Fast high-fidelity quantum nondemolition qubit readout via a nonperturbative cross-Kerr coupling, Phys Rev X, 10, 1, 11045, (2020) · doi:10.1103/PhysRevX.10.011045
[70] Reed, MD; Johnson, BR; Houck, AA; DiCarlo, L.; Chow, JM; Schuster, DI; Frunzio, L.; Schoelkopf, RJ, Fast reset and suppressing spontaneous emission of a superconducting qubit, Appl Phys Lett, 96, 20, 203110, (2010)
[71] Sete, EA; Martinis, JM; Korotkov, AN, Quantum theory of a bandpass Purcell filter for qubit readout, Phys Rev A At Mol Opt Phys, 92, 1, 1-13, (2015) · doi:10.1103/PhysRevA.92.012325
[72] Jeffrey, E.; Sank, D.; Mutus, JY; White, TC; Kelly, J.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Megrant, A.; O’Malley, PJ; Neill, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Cleland, AN; Martinis, JM, Fast accurate state measurement with superconducting qubits, Phys Rev Lett, 112, 19, 1-5, (2014) · doi:10.1103/PhysRevLett.112.190504
[73] Bronn, NT; Magesan, E.; Masluk, NA; Chow, JM; Gambetta, JM; Steffen, M., Reducing spontaneous emission in circuit quantum electrodynamics by a combined readout/filter technique, IEEE Trans Appl Supercond, (2015) · doi:10.1109/TASC.2015.2456109
[74] Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potočnik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A., Rapid high-fidelity single-shot dispersive readout of superconducting qubits, Phys Rev Appl, 7, 5, 1-11, (2017) · doi:10.1103/PhysRevApplied.7.054020
[75] Sunada, Y.; Kono, S.; Ilves, J.; Tamate, S.; Sugiyama, T.; Tabuchi, Y.; Nakamura, Y., Fast readout and reset of a superconducting qubit coupled to a resonator with an intrinsic Purcell filter, Phys Rev Appl, 10, 1, 1, (2022) · doi:10.1103/physrevapplied.17.044016
[76] Jerger, M.; Poletto, S.; MacHa, P.; Hübner, U.; Il’Ichev, E.; Ustinov, AV, Frequency division multiplexing readout and simultaneous manipulation of an array of flux qubits, Appl Phys Lett, 101, 4, 2-5, (2012) · doi:10.1063/1.4739454
[77] Dicarlo, L.; Chow, JM; Gambetta, JM; Bishop, LS; Johnson, BR; Schuster, DI; Majer, J.; Blais, A.; Frunzio, L.; Girvin, SM; Schoelkopf, RJ, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature, 460, 7252, 240-244, (2009) · doi:10.1038/nature08121
[78] Barends, R.; Kelly, J.; Megrant, A.; Veitia, A.; Sank, D.; Jeffrey, E.; White, TC; Mutus, J.; Fowler, AG; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Neill, C.; O’Malley, P.; Roushan, P.; Vainsencher, A.; Wenner, J.; Korotkov, AN; Cleland, AN; Martinis, JM, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature, 508, 7497, 500-503, (2014) · doi:10.1038/nature13171
[79] Caldwell, SA; Didier, N.; Ryan, CA; Sete, EA, Parametrically activated entangling gates using transmon qubits, Phys Rev Appl, 10, 3, 1-8, (2018) · doi:10.1103/PhysRevApplied.10.034050
[80] Patterson, A.; Rahamim, J.; Tsunoda, T.; Spring, P.; Jebari, S.; Ratter, K.; Mergenthaler, M.; Tancredi, G.; Vlastakis, B.; Esposito, M., Calibration of a cross-resonance two-qubit gate between directly coupled transmons, Phys Rev Appl, 12, 6, 064013, (2019)
[81] Reagor, M.; Paik, H.; Catelani, G.; Sun, L.; Axline, C.; Holland, E.; Pop, IM; Masluk, NA; Brecht, T.; Frunzio, L., Reaching 10 ms single photon lifetimes for superconducting aluminum cavities, Appl Phys Lett, 102, 19, 192604, (2013)
[82] Suri B (2015) Transmon qubits coupled to superconducting lumped element resonators. Ph.D. thesis, University of Maryland, College Park
[83] Sears AP, Petrenko A, Catelani G, Sun L, Paik H, Kirchmair G, Frunzio L, Glazman LI, Girvin SM, Schoelkopf RJ (2012) Photon shot noise dephasing in the strong-dispersive limit of circuit QED. Phys Rev B 86(18):180504. doi:10.1103/PhysRevB.86.180504. Accessed 21 May 2022
[84] Gambetta J, Blais A, Schuster DI, Wallraff A, Frunzio L, Majer J, Devoret MH, Girvin SM, Schoelkopf RJ (2006) Qubit-photon interactions in a cavity: measurement-induced dephasing and number splitting. Phys Rev A 74(4):042318. doi:10.1103/PhysRevA.74.042318. Accessed 21 May 2022
[85] Yeh, JH; Lefebvre, J.; Premaratne, S.; Wellstood, FC; Palmer, BS, Microwave attenuators for use with quantum devices below 100 mK, J Appl Phys, (2017) · doi:10.1063/1.4984894
[86] Ye, Y.; Cao, S.; Wu, Y.; Chen, X.; Zhu, Q.; Li, S.; Chen, F.; Gong, M.; Zha, C.; Huang, HL; Zhao, Y.; Wang, S.; Guo, S.; Qian, H.; Liang, F.; Lin, J.; Xu, Y.; Guo, C.; Sun, L.; Li, N.; Deng, H.; Zhu, X.; Pan, JW, Realization of high-fidelity controlled-phase gates in extensible superconducting qubits design with a tunable coupler, Chin Phys Lett, (2021) · doi:10.1088/0256-307X/38/10/100301
[87] Ithier, G.; Collin, E.; Joyez, P.; Meeson, PJ; Vion, D.; Esteve, D.; Chiarello, F.; Shnirman, A.; Makhlin, Y.; Schriefl, J.; Schön, G., Decoherence in a superconducting quantum bit circuit, Phys Rev B, 72, 13, 134519, (2005) · doi:10.1103/PhysRevB.72.134519
[88] Catelani, G.; Koch, J.; Frunzio, L.; Schoelkopf, RJ; Devoret, MH; Glazman, LI, Quasiparticle relaxation of superconducting qubits in the presence of flux, Phys Rev Lett, 106, 7, (2011) · doi:10.1103/PhysRevLett.106.077002
[89] Córcoles, AD; Chow, JM; Gambetta, JM; Rigetti, C.; Rozen, JR; Keefe, GA; Beth Rothwell, M.; Ketchen, MB; Steffen, M., Protecting superconducting qubits from radiation, Appl Phys Lett, 99, 18, (2011) · doi:10.1063/1.3658630
[90] Koch, J.; Yu, TM; Gambetta, J.; Houck, AA; Schuster, DI; Majer, J.; Blais, A.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Charge-insensitive qubit design derived from the Cooper pair box, Phys Rev A, 76, 4, (2007) · doi:10.1103/PhysRevA.76.042319
[91] Wang, Z.; Shankar, S.; Minev, ZK; Campagne-Ibarcq, P.; Narla, A.; Devoret, MH, Cavity attenuators for superconducting qubits, Phys Rev Appl, 11, 1, (2019) · doi:10.1103/PhysRevApplied.11.014031
[92] Hutchings, MD; Hertzberg, JB; Liu, Y.; Bronn, NT; Keefe, GA; Brink, M.; Chow, JM; Plourde, BLT, Tunable superconducting qubits with flux-independent coherence, Phys Rev Appl, 8, 4, (2017) · doi:10.1103/PhysRevApplied.8.044003
[93] Caldwell, SA; Didier, N.; Ryan, CA; Sete, EA; Hudson, A.; Karalekas, P.; Manenti, R.; da Silva, MP; Sinclair, R.; Acala, E.; Alidoust, N.; Angeles, J.; Bestwick, A.; Block, M.; Bloom, B.; Bradley, A.; Bui, C.; Capelluto, L.; Chilcott, R.; Cordova, J.; Crossman, G.; Curtis, M.; Deshpande, S.; Bouayadi, TE; Girshovich, D.; Hong, S.; Kuang, K.; Lenihan, M.; Manning, T.; Marchenkov, A.; Marshall, J.; Maydra, R.; Mohan, Y.; O’Brien, W.; Osborn, C.; Otterbach, J.; Papageorge, A.; Paquette, J-P; Pelstring, M.; Polloreno, A.; Prawiroatmodjo, G.; Rawat, V.; Reagor, M.; Renzas, R.; Rubin, N.; Russell, D.; Rust, M.; Scarabelli, D.; Scheer, M.; Selvanayagam, M.; Smith, R.; Staley, A.; Suska, M.; Tezak, N.; Thompson, DC; To, T-W; Vahidpour, M.; Vodrahalli, N.; Whyland, T.; Yadav, K.; Zeng, W.; Rigetti, C., Parametrically activated entangling gates using transmon qubits, Phys Rev Appl, 10, 3, (2018) · doi:10.1103/PhysRevApplied.10.034050
[94] DiCarlo, L.; Chow, JM; Gambetta, JM; Bishop, LS; Johnson, BR; Schuster, DI; Majer, J.; Blais, A.; Frunzio, L.; Girvin, SM; Schoelkopf, RJ, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature, 460, 7252, 240-244, (2009) · doi:10.1038/nature08121
[95] Wallraff, A.; Schuster, DI; Blais, A.; Frunzio, L.; Majer, J.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Approaching unit visibility for control of a superconducting qubit with dispersive readout, Phys Rev Lett, 95, 6, (2005) · doi:10.1103/PhysRevLett.95.060501
[96] Vijay, R.; Slichter, DH; Siddiqi, I., Observation of quantum jumps in a superconducting artificial atom, Phys Rev Lett, 106, 11, (2011) · doi:10.1103/PhysRevLett.106.110502
[97] Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potonik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A., Rapid high-fidelity single-shot dispersive readout of superconducting qubits, Phys Rev Appl, 7, 5, (2017) · doi:10.1103/PhysRevApplied.7.054020
[98] Aumentado, J., Superconducting parametric amplifiers: the state of the art in Josephson parametric amplifiers, IEEE Microw Mag, 21, 8, 45-59, (2020) · doi:10.1109/MMM.2020.2993476
[99] Serniak K, Diamond S, Hays M, Fatemi V, Shankar S, Frunzio L, Schoelkopf RJ, Devoret MH (2019) Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons. Phys Rev Appl 12(1):014052. doi:10.1103/PhysRevApplied.12.014052. Accessed 22 May 2022
[100] Parma V (2014). Cryostat design CERN. doi:10.5170/CERN-2014-005.353. http://cds.cern.ch/record/1974062. Accessed 20 May 2022
[101] Gambetta, JM; Motzoi, F.; Merkel, ST; Wilhelm, FK, Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator, Phys Rev A At Mol Opt Phys, 83, 1, 1-13, (2011) · doi:10.1103/PhysRevA.83.012308
[102] Motzoi, F.; Gambetta, JM; Rebentrost, P.; Wilhelm, FK, Simple pulses for elimination of leakage in weakly nonlinear qubits, Phys Rev Lett, 103, 11, 1-4, (2009) · doi:10.1103/PhysRevLett.103.110501
[103] Motzoi, F.; Wilhelm, FK, Improving frequency selection of driven pulses using derivative-based transition suppression, Phys Rev A At Mol Opt Phys, (2013) · doi:10.1103/PhysRevA.88.062318
[104] Blais, A.; Gambetta, J.; Wallraff, A.; Schuster, DI; Girvin, SM; Devoret, MH; Schoelkopf, RJ, Quantum-information processing with circuit quantum electrodynamics, Phys Rev A At Mol Opt Phys, 75, 3, 1-21, (2007) · doi:10.1103/PhysRevA.75.032329
[105] McKay, DC; Wood, CJ; Sheldon, S.; Chow, JM; Gambetta, JM, Efficient Z gates for quantum computing, Phys Rev A, 96, 2, 1-8, (2017) · doi:10.1103/PhysRevA.96.022330
[106] Johnson, BR; Da Silva, MP; Ryan, CA; Kimmel, S.; Chow, JM; Ohki, TA, Demonstration of robust quantum gate tomography via randomized benchmarking, New J Phys, (2015) · doi:10.1088/1367-2630/17/11/113019
[107] Niskanen, AO; Harrabi, K.; Yoshihara, F.; Nakamura, Y.; Lloyd, S.; Tsai, JS, Quantum coherent tunable coupling of superconducting qubits, Science, 316, 5825, 723-726, (2007) · doi:10.1126/science.1141324
[108] Harris, R.; Berkley, AJ; Johnson, MW; Bunyk, P.; Govorkov, S.; Thom, MC; Uchaikin, S.; Wilson, AB; Chung, J.; Holtham, E.; Biamonte, JD; Smirnov, AY; Amin, MHS; Maassen Van Den Brink, A., Sign- and magnitude-tunable coupler for superconducting flux qubits, Phys Rev Lett, 98, 17, 2-5, (2007) · doi:10.1103/PhysRevLett.98.177001
[109] Van Der Ploeg, SHW; Izmalkov, A.; Van Den Brink, AM; Hübner, U.; Grajcar, M.; Il’ichev, E.; Meyer, HG; Zagoskin, AM, Controllable coupling of superconducting flux qubits, Phys Rev Lett, 98, 5, 42-45, (2007) · doi:10.1103/PhysRevLett.98.057004
[110] Hime, T., Solid-state qubits with current-controlled coupling, Science, 597, December, 1427-1430, (2006)
[111] Allman, MS; Whittaker, JD; Castellanos-Beltran, M.; Cicak, K.; Da Silva, F.; Defeo, MP; Lecocq, F.; Sirois, A.; Teufel, JD; Aumentado, J.; Simmonds, RW, Tunable resonant and nonresonant interactions between a phase qubit and LC resonator, Phys Rev Lett, 112, 12, 1-6, (2013) · doi:10.1103/PhysRevLett.112.123601
[112] Bialczak, RC; Ansmann, M.; Hofheinz, M.; Lenander, M.; Lucero, E.; Neeley, M.; O’Connell, AD; Sank, D.; Wang, H.; Weides, M.; Wenner, J.; Yamamoto, T.; Cleland, AN; Martinis, JM, Fast tunable coupler for superconducting qubits, Phys Rev Lett, 106, 6, 9-12, (2011) · doi:10.1103/PhysRevLett.106.060501
[113] Chen, Y.; Neill, C.; Roushan, P.; Leung, N.; Fang, M.; Barends, R.; Kelly, J.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Megrant, A.; Mutus, JY; O’Malley, PJJ; Quintana, CM; Sank, D.; Vainsencher, A.; Wenner, J.; White, TC; Geller, MR; Cleland, AN; Martinis, JM, Qubit architecture with high coherence and fast tunable coupling, Phys Rev Lett, 113, 22, 1-5, (2014) · doi:10.1103/PhysRevLett.113.220502
[114] Geller, MR; Donate, E.; Chen, Y.; Fang, MT; Leung, N.; Neill, C.; Roushan, P.; Martinis, JM, Tunable coupler for superconducting Xmon qubits: perturbative nonlinear model, Phys Rev A At Mol Opt Phys, 92, 1, 1-9, (2015) · doi:10.1103/PhysRevA.92.012320
[115] Baust, A.; Hoffmann, E.; Haeberlein, M.; Schwarz, MJ; Eder, P.; Goetz, J.; Wulschner, F.; Xie, E.; Zhong, L.; Quijandría, F.; Peropadre, B.; Zueco, D.; García Ripoll, JJ; Solano, E.; Fedorov, K.; Menzel, EP; Deppe, F.; Marx, A.; Gross, R., Tunable and switchable coupling between two superconducting resonators, Phys Rev B Condens Matter Mater Phys, 91, 1, 1-6, (2015) · doi:10.1103/PhysRevB.91.014515
[116] Wulschner, F.; Goetz, J.; Koessel, FR; Hoffmann, E.; Baust, A.; Eder, P.; Fischer, M.; Haeberlein, M.; Schwarz, MJ; Pernpeintner, M.; Xie, E.; Zhong, L.; Zollitsch, CW; Peropadre, B.; Ripoll, JJG; Solano, E.; Fedorov, KG; Menzel, EP; Deppe, F.; Marx, A.; Gross, R., Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID, EPJ Quantum Technol, (2016) · doi:10.1140/epjqt/s40507-016-0048-2
[117] Yan, F.; Krantz, P.; Sung, Y.; Kjaergaard, M.; Campbell, DL; Orlando, TP; Gustavsson, S.; Oliver, WD, Tunable Coupling scheme for implementing high-fidelity two-qubit gates, Phys Rev Appl, 10, 5, 1, (2018) · doi:10.1103/PhysRevApplied.10.054062
[118] Collodo, MC; Herrmann, J.; Lacroix, N.; Andersen, CK; Remm, A.; Lazar, S.; Besse, JC; Walter, T.; Wallraff, A.; Eichler, C., Implementation of conditional phase gates based on tunable ZZ interactions, Phys Rev Lett, 125, 24, 1-6, (2020) · doi:10.1103/PhysRevLett.125.240502
[119] Xu, Y.; Chu, J.; Yuan, J.; Qiu, J.; Zhou, Y.; Zhang, L.; Tan, X.; Yu, Y.; Liu, S.; Li, J.; Yan, F.; Yu, D., High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits, Phys Rev Lett, 125, 24, (2020) · doi:10.1103/PhysRevLett.125.240503
[120] Stehlik, J.; Zajac, DM; Underwood, DL; Phung, T.; Blair, J.; Carnevale, S.; Klaus, D.; Keefe, GA; Carniol, A.; Kumph, M.; Steffen, M.; Dial, OE, Tunable coupling architecture for fixed-frequency transmon superconducting qubits, Phys Rev Lett, 127, 8, 1-7, (2021) · doi:10.1103/PhysRevLett.127.080505
[121] Sung, Y.; Ding, L.; Braumüller, J.; Vepsäläinen, A.; Kannan, B.; Kjaergaard, M.; Greene, A.; Samach, GO; McNally, C.; Kim, D.; Melville, A.; Niedzielski, BM; Schwartz, ME; Yoder, JL; Orlando, TP; Gustavsson, S.; Oliver, WD, Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler, Phys Rev X, 11, 2, 1-28, (2021) · doi:10.1103/PhysRevX.11.021058
[122] Sete, EA; Chen, AQ; Manenti, R.; Kulshreshtha, S.; Poletto, S., Floating tunable coupler for scalable quantum computing architectures, Phys Rev Appl, (2021) · doi:10.1103/PhysRevApplied.15.064063
[123] Srinivasan, SJ; Hoffman, AJ; Gambetta, JM; Houck, AA, Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-Shaped energy level diagram, Phys Rev Lett, 106, 8, 1-4, (2011) · doi:10.1103/PhysRevLett.106.083601
[124] Lu, Y.; Chakram, S.; Leung, N.; Earnest, N.; Naik, RK; Huang, Z.; Groszkowski, P.; Kapit, E.; Koch, J.; Schuster, DI, Universal stabilization of a parametrically coupled qubit, Phys Rev Lett, 119, 15, 1-6, (2017) · doi:10.1103/PhysRevLett.119.150502
[125] Foxen, B.; Neill, C.; Dunsworth, A.; Roushan, P.; Chiaro, B.; Megrant, A.; Kelly, J.; Chen, Z.; Satzinger, K.; Barends, R.; Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, JC; Boixo, S.; Buell, D.; Burkett, B.; Chen, Y.; Collins, R.; Farhi, E.; Fowler, A.; Gidney, C.; Giustina, M.; Graff, R.; Harrigan, M.; Huang, T.; Isakov, SV; Jeffrey, E.; Jiang, Z.; Kafri, D.; Kechedzhi, K.; Klimov, P.; Korotkov, A.; Kostritsa, F.; Landhuis, D.; Lucero, E.; Mcclean, J.; Mcewen, M.; Mi, X.; Mohseni, M.; Mutus, JY; Naaman, O.; Neeley, M.; Niu, M.; Petukhov, A.; Quintana, C.; Rubin, N.; Sank, D.; Smelyanskiy, V.; Vainsencher, A.; White, TC; Yao, Z.; Yeh, P.; Zalcman, A.; Neven, H.; Martinis, JM, Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms, Phys Rev Lett, 125, 12, 120504, (2020) · doi:10.1103/PhysRevLett.125.120504
[126] Xu, X.; Ansari, MH, ZZ freedom in two-qubit gates, Phys Rev Appl, 15, 6, 1, (2021) · doi:10.1103/PhysRevApplied.15.064074
[127] Neeley, M.; Bialczak, RC; Lenander, M.; Lucero, E.; Mariantoni, M.; Oconnell, AD; Sank, D.; Wang, H.; Weides, M.; Wenner, J.; Yin, Y.; Yamamoto, T.; Cleland, AN; Martinis, JM, Generation of three-qubit entangled states using superconducting phase qubits, Nature, 467, 7315, 570-573, (2010) · doi:10.1038/nature09418
[128] Dewes, A.; Ong, FR; Schmitt, V.; Lauro, R.; Boulant, N.; Bertet, P.; Vion, D.; Esteve, D., Characterization of a two-transmon processor with individual single-shot qubit readout, Phys Rev Lett, 108, 5, 1-5, (2012) · doi:10.1103/PhysRevLett.108.057002
[129] Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, A.; Las Heras, U.; Lamata, L.; Solano, E.; Filipp, S.; Wallraff, A., Digital quantum simulation of spin models with circuit quantum electrodynamics, Phys Rev X, 5, 2, 1-12, (2015) · doi:10.1103/PhysRevX.5.021027
[130] Chow JM (2010) Quantum information processing with superconducting qubits 1-1, Publisher: Proquest, Umi Dissertation Publishing, Language: English, ISBN-10: 1243793198, ISBN-13: 978-1243793195. doi:10.1109/CLEOE-IQEC.2007.4386783
[131] Dicarlo, L.; Reed, MD; Sun, L.; Johnson, BR; Chow, JM; Gambetta, JM; Frunzio, L.; Girvin, SM; Devoret, MH; Schoelkopf, RJ, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature, 467, 7315, 574-578, (2010) · doi:10.1038/nature09416
[132] Kelly, J.; Barends, R.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, AG; Hoi, IC; Jeffrey, E.; Megrant, A.; Mutus, J.; Neill, C.; O’Malley, PJJ; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, TC; Cleland, AN; Martinis, JM, Optimal quantum control using randomized benchmarking, Phys Rev Lett, 112, 24, 1-5, (2014) · doi:10.1103/PhysRevLett.112.240504
[133] Martinis, JM; Geller, MR, Fast adiabatic qubit gates using only z control, Phys Rev A At Mol Opt Phys, 90, 2, 1-9, (2014) · doi:10.1103/PhysRevA.90.022307
[134] Rol, MA; Battistel, F.; Malinowski, FK; Bultink, CC; Tarasinski, BM; Vollmer, R.; Haider, N.; Muthusubramanian, N.; Bruno, A.; Terhal, BM; Dicarlo, L., Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits, Phys Rev Lett, 123, 12, 120502, (2019) · doi:10.1103/PhysRevLett.123.120502
[135] Negîrneac, V.; Ali, H.; Muthusubramanian, N.; Battistel, F.; Sagastizabal, R.; Moreira, MS; Marques, JF; Vlothuizen, WJ; Beekman, M.; Zachariadis, C.; Haider, N.; Bruno, A.; Dicarlo, L., High-fidelity controlled-Z Gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor, Phys Rev Lett, 126, 22, 1-13, (2021) · doi:10.1103/PhysRevLett.126.220502
[136] Chow, JM; Córcoles, AD; Gambetta, JM; Rigetti, C.; Johnson, BR; Smolin, JA; Rozen, JR; Keefe, GA; Rothwell, MB; Ketchen, MB; Steffen, M., Simple all-microwave entangling gate for fixed-frequency superconducting qubits, Phys Rev Lett, 107, 8, 1-5, (2011) · doi:10.1103/PhysRevLett.107.080502
[137] Chow, JM; Gambetta, JM; Córcoles, AD; Merkel, ST; Smolin, JA; Rigetti, C.; Poletto, S.; Keefe, GA; Rothwell, MB; Rozen, JR; Ketchen, MB; Steffen, M., Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits, Phys Rev Lett, 109, 6, 1-5, (2012) · doi:10.1103/PhysRevLett.109.060501
[138] Córcoles, AD; Gambetta, JM; Chow, JM; Smolin, JA; Ware, M.; Strand, J.; Plourde, BLT; Steffen, M., Process verification of two-qubit quantum gates by randomized benchmarking, Phys Rev A At Mol Opt Phys, 87, 3, 1-4, (2013) · doi:10.1103/PhysRevA.87.030301
[139] Chow, JM; Gambetta, JM; Magesan, E.; Abraham, DW; Cross, AW; Johnson, BR; Masluk, NA; Ryan, CA; Smolin, JA; Srinivasan, SJ; Steffen, M., Implementing a strand of a scalable fault-tolerant quantum computing fabric, Nat Commun, 5, 1-9, (2014) · doi:10.1038/ncomms5015
[140] Córcoles, AD; Magesan, E.; Srinivasan, SJ; Cross, AW; Steffen, M.; Gambetta, JM; Chow, JM, Demonstration of a quantum error detection code using a square lattice of four superconducting qubits, Nat Commun, (2015) · doi:10.1038/ncomms7979
[141] Sheldon, S.; Magesan, E.; Chow, JM; Gambetta, JM, Procedure for systematically tuning up cross-talk in the cross-resonance gate, Phys Rev A, 93, 6, 1-5, (2016) · doi:10.1103/PhysRevA.93.060302
[142] Takita, M.; Cross, AW; Córcoles, AD; Chow, JM; Gambetta, JM, Experimental demonstration of fault-tolerant state preparation with superconducting qubits, Phys Rev Lett, 119, 18, 1-5, (2017) · doi:10.1103/PhysRevLett.119.180501
[143] Tripathi, V.; Khezri, M.; Korotkov, AN, Operation and intrinsic error budget of a two-qubit cross-resonance gate, Phys Rev A, 100, 1, 1-21, (2019) · doi:10.1103/PhysRevA.100.012301
[144] Magesan, E.; Gambetta, JM, Effective Hamiltonian models of the cross-resonance gate, Phys Rev A, (2020) · doi:10.1103/PhysRevA.101.052308
[145] Malekakhlagh, M.; Magesan, E.; McKay, DC, First-principles analysis of cross-resonance gate operation, Phys Rev A, 102, 4, 1-28, (2020) · doi:10.1103/PhysRevA.102.042605
[146] Kirchhoff, S.; Keßler, T.; Liebermann, PJ; Assémat, E.; Machnes, S.; Motzoi, F.; Wilhelm, FK, Optimized cross-resonance gate for coupled transmon systems, Phys Rev A, 97, 4, 1-9, (2018) · doi:10.1103/PhysRevA.97.042348
[147] Sundaresan, N.; Lauer, I.; Pritchett, E.; Magesan, E.; Jurcevic, P.; Gambetta, JM, Reducing unitary and spectator errors in cross resonance with optimized rotary echoes, PRX Quantum, 1, 2, 1, (2020) · doi:10.1103/prxquantum.1.020318
[148] Ku, J.; Xu, X.; Brink, M.; McKay, DC; Hertzberg, JB; Ansari, MH; Plourde, BLT, Suppression of unwanted ZZ interactions in a hybrid two-qubit system, Phys Rev Lett, 125, 20, (2020) · doi:10.1103/PhysRevLett.125.200504
[149] Heya, K.; Kanazawa, N., Cross-cross resonance gate, PRX Quantum, 2, 4, 1, (2021) · doi:10.1103/prxquantum.2.040336
[150] Kandala, A.; Wei, KX; Srinivasan, S.; Magesan, E.; Carnevale, S.; Keefe, GA; Klaus, D.; Dial, O.; McKay, DC, Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered suppression, Phys Rev Lett, 127, 13, (2021) · doi:10.1103/PhysRevLett.127.130501
[151] Cross, AW; Gambetta, JM, Optimized pulse shapes for a resonator-induced phase gate, Phys Rev A At Mol Opt Phys, 91, 3, 1-12, (2015) · doi:10.1103/PhysRevA.91.032325
[152] Paik, H.; Mezzacapo, A.; Sandberg, M.; McClure, DT; Abdo, B.; Córcoles, AD; Dial, O.; Bogorin, DF; Plourde, BLT; Steffen, M.; Cross, AW; Gambetta, JM; Chow, JM, Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-QED system, Phys Rev Lett, 117, 25, 1-5, (2016) · doi:10.1103/PhysRevLett.117.250502
[153] Bertet, P.; Harmans, CJPM; Mooij, JE, Parametric coupling for superconducting qubits, Phys Rev B Condens Matter Mater Phys, 73, 6, 1-6, (2006) · doi:10.1103/PhysRevB.73.064512
[154] McKay, DC; Filipp, S.; Mezzacapo, A.; Magesan, E.; Chow, JM; Gambetta, JM, Universal gate for fixed-frequency qubits via a tunable bus, Phys Rev Appl, 6, 6, 1-10, (2016) · doi:10.1103/PhysRevApplied.6.064007
[155] Mundada, P.; Zhang, G.; Hazard, T.; Houck, A., Suppression of qubit crosstalk in a tunable coupling superconducting circuit, Phys Rev Appl, 12, 5, 1-10, (2019) · doi:10.1103/PhysRevApplied.12.054023
[156] Reagor M, Osborn CB, Tezak N, Staley A, Prawiroatmodjo G, Scheer M, Alidoust N, Sete EA, Didier N, Da Silva MP, Acala E, Angeles J, Bestwick A, Block M, Bloom B, Bradley A, Bui C, Caldwell S, Capelluto L, Chilcott R, Cordova J, Crossman G, Curtis M, Deshpande S, El Bouayadi T, Girshovich D, Hong S, Hudson A, Karalekas P, Kuang K, Lenihan M, Manenti R, Manning T, Marshall J, Mohan Y, O’Brien W, Otterbach J, Papageorge A, Paquette JP, Pelstring M, Polloreno A, Rawat V, Ryan CA, Renzas R, Rubin N, Russel D, Rust M, Scarabelli D, Selvanayagam M, Sinclair R, Smith R, Suska M, To TW, Vahidpour M, Vodrahalli N, Whyland T, Yadav K, Zeng W, Rigetti CT, (2018) Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci Adv. doi:10.1126/sciadv.aao3603arXiv:1706.06570
[157] Hong, SS; Papageorge, AT; Sivarajah, P.; Crossman, G.; Didier, N.; Polloreno, AM; Sete, EA; Turkowski, SW; Da Silva, MP; Johnson, BR, Demonstration of a parametrically activated entangling gate protected from flux noise, Phys Rev A, 101, 1, 12302, (2020) · doi:10.1103/PhysRevA.101.012302
[158] Haus, HA, Electromagnetic noise and quantum optical measurements, (2000), Berlin: Springer, Berlin · Zbl 0998.81500
[159] Clerk, AA; Devoret, MH; Girvin, SM; Marquardt, F.; Schoelkopf, RJ, Introduction to quantum noise, measurement, and amplification, Rev Mod Phys, 82, 2, 1155, (2010) · Zbl 1205.81001
[160] Caves, CM, Quantum limits on noise in linear amplifiers, Phys Rev D, 26, 8, 1817, (1982)
[161] Flurin E (2014) The Josephson mixer: a swiss army knife for microwave quantum optics. Ph.D. thesis, Ecole normale supérieure-ENS PARIS
[162] Yurke, B.; Corruccini, L.; Kaminsky, P.; Rupp, L.; Smith, A.; Silver, A.; Simon, R.; Whittaker, E., Observation of parametric amplification and deamplification in a Josephson parametric amplifier, Phys Rev A, 39, 5, 2519, (1989)
[163] Wahlsten, S.; Rudner, S.; Claeson, T., Arrays of Josephson tunnel junctions as parametric amplifiers, J Appl Phys, 49, 7, 4248-4263, (1978)
[164] Olsson, H.; Claeson, T., Low-noise Josephson parametric amplification and oscillations at 9 GHz, J Appl Phys, 64, 10, 5234-5243, (1988)
[165] Siddiqi, I.; Vijay, R.; Pierre, F.; Wilson, C.; Metcalfe, M.; Rigetti, C.; Frunzio, L.; Devoret, M., Rf-driven Josephson bifurcation amplifier for quantum measurement, Phys Rev Lett, 93, 20, 207002, (2004)
[166] Tholén, EA; Ergül, A.; Doherty, EM; Weber, FM; Grégis, F.; Haviland, DB, Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators, Appl Phys Lett, 90, 25, 253509, (2007)
[167] Dykman, M.; Maloney, C.; Smelyanskiy, V.; Silverstein, M., Fluctuational phase-flip transitions in parametrically driven oscillators, Phys Rev E, 57, 5, 5202, (1998)
[168] Yurke, B.; Kaminsky, P.; Miller, R.; Whittaker, E.; Smith, A.; Silver, A.; Simon, R., Observation of 4.2-k equilibrium-noise squeezing via a Josephson-parametric amplifier, Phys Rev Lett, 60, 9, 764, (1988)
[169] Wustmann, W.; Shumeiko, V., Parametric resonance in tunable superconducting cavities, Phys Rev B, 87, 18, 184501, (2013)
[170] Wustmann, W.; Shumeiko, V., Nondegenerate parametric resonance in a tunable superconducting cavity, Phys Rev Appl, 8, 2, 024018, (2017)
[171] Yamamoto, T.; Inomata, K.; Watanabe, M.; Matsuba, K.; Miyazaki, T.; Oliver, WD; Nakamura, Y.; Tsai, J., Flux-driven Josephson parametric amplifier, Appl Phys Lett, 93, 4, 042510, (2008)
[172] Castellanos-Beltran, M.; Irwin, K.; Hilton, G.; Vale, L.; Lehnert, K., Amplification and squeezing of quantum noise with a tunable Josephson metamaterial, Nat Phys, 4, 12, 929-931, (2008)
[173] Wilson, C.; Duty, T.; Sandberg, M.; Persson, F.; Shumeiko, V.; Delsing, P., Photon generation in an electromagnetic cavity with a time-dependent boundary, Phys Rev Lett, 105, 23, 233907, (2010)
[174] Sundqvist, K.; Kintaş, S.; Simoen, M.; Krantz, P.; Sandberg, M.; Wilson, C.; Delsing, P., The pumpistor: a linearized model of a flux-pumped superconducting quantum interference device for use as a negative-resistance parametric amplifier, Appl Phys Lett, 103, 10, 102603, (2013)
[175] Sundqvist, KM; Delsing, P., Negative-resistance models for parametrically flux-pumped superconducting quantum interference devices, EPJ Quantum Technol, 1, 1, 1-21, (2014)
[176] Bergeal, N.; Vijay, R.; Manucharyan, V.; Siddiqi, I.; Schoelkopf, R.; Girvin, S.; Devoret, M., Analog information processing at the quantum limit with a Josephson ring modulator, Nat Phys, 6, 4, 296-302, (2010)
[177] Bergeal, N.; Schackert, F.; Metcalfe, M.; Vijay, R.; Manucharyan, V.; Frunzio, L.; Prober, D.; Schoelkopf, R.; Girvin, S.; Devoret, M., Phase-preserving amplification near the quantum limit with a Josephson ring modulator, Nature, 465, 7294, 64-68, (2010)
[178] Abdo, B.; Schackert, F.; Hatridge, M.; Rigetti, C.; Devoret, M., Josephson amplifier for qubit readout, Appl Phys Lett, 99, 16, 162506, (2011)
[179] Abdo, B.; Kamal, A.; Devoret, M., Nondegenerate three-wave mixing with the Josephson ring modulator, Phys Rev B, 87, 1, 014508, (2013)
[180] Liu, G.; Chien, T-C; Cao, X.; Lanes, O.; Alpern, E.; Pekker, D.; Hatridge, M., Josephson parametric converter saturation and higher order effects, Appl Phys Lett, 111, 20, 202603, (2017)
[181] Krantz, P.; Reshitnyk, Y.; Wustmann, W.; Bylander, J.; Gustavsson, S.; Oliver, WD; Duty, T.; Shumeiko, V.; Delsing, P., Investigation of nonlinear effects in Josephson parametric oscillators used in circuit quantum electrodynamics, New J Phys, 15, 10, 105002, (2013)
[182] Krantz P (2013) Parametrically pumped superconducting circuits. Chalmers Tekniska Hogskola (Sweden)
[183] Chen, Y.; Sank, D.; O’Malley, P.; White, T.; Barends, R.; Chiaro, B.; Kelly, J.; Lucero, E.; Mariantoni, M.; Megrant, A., Multiplexed dispersive readout of superconducting phase qubits, Appl Phys Lett, 101, 18, 182601, (2012)
[184] Kelly, J.; Barends, R.; Fowler, AG; Megrant, A.; Jeffrey, E.; White, TC; Sank, D.; Mutus, JY; Campbell, B.; Chen, Y., State preservation by repetitive error detection in a superconducting quantum circuit, Nature, 519, 7541, 66-69, (2015)
[185] Jerger, M.; Poletto, S.; Macha, P.; Hübner, U.; Il’ichev, E.; Ustinov, AV, Frequency division multiplexing readout and simultaneous manipulation of an array of flux qubits, Appl Phys Lett, 101, 4, 042604, (2012)
[186] Chapman, BJ; Rosenthal, EI; Kerckhoff, J.; Vale, LR; Hilton, GC; Lehnert, K., Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout, Appl Phys Lett, 110, 16, 162601, (2017)
[187] Roy, T.; Kundu, S.; Chand, M.; Vadiraj, A.; Ranadive, A.; Nehra, N.; Patankar, MP; Aumentado, J.; Clerk, A.; Vijay, R., Broadband parametric amplification with impedance engineering: beyond the gain-bandwidth product, Appl Phys Lett, 107, 26, 262601, (2015)
[188] Grebel, J.; Bienfait, A.; Dumur, É.; Chang, H-S; Chou, M-H; Conner, C.; Peairs, G.; Povey, R.; Zhong, Y.; Cleland, A., Flux-pumped impedance-engineered broadband Josephson parametric amplifier, Appl Phys Lett, 118, 14, 142601, (2021)
[189] Lu, Y.; Xu, W.; Zuo, Q.; Pan, J.; Wei, X.; Jiang, J.; Li, Z.; Zhang, K.; Guo, T.; Wang, S., Broadband Josephson parametric amplifier using lumped-element transmission line impedance matching architecture, Appl Phys Lett, 120, 8, 082601, (2022)
[190] Mutus, JY; White, TC; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A., Strong environmental coupling in a Josephson parametric amplifier, Appl Phys Lett, 104, 26, 263513, (2014)
[191] Macklin, C.; O’Brien, K.; Hover, D.; Schwartz, ME; Bolkhovsky, V.; Zhang, X.; Oliver, WD; Siddiqi, I., A near-quantum-limited Josephson traveling-wave parametric amplifier, Science, 350, 6258, 307-310, (2015)
[192] O’Brien, K.; Macklin, C.; Siddiqi, I.; Zhang, X., Resonant phase matching of Josephson junction traveling wave parametric amplifiers, Phys Rev Lett, 113, 15, 157001, (2014)
[193] White, T.; Mutus, J.; Hoi, I-C; Barends, R.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E., Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching, Appl Phys Lett, 106, 24, 242601, (2015)
[194] Planat, L.; Ranadive, A.; Dassonneville, R.; Martínez, JP; Léger, S.; Naud, C.; Buisson, O.; Hasch-Guichard, W.; Basko, DM; Roch, N., Photonic-crystal Josephson traveling-wave parametric amplifier, Phys Rev X, 10, 2, 021021, (2020)
[195] Ho Eom, B.; Day, PK; LeDuc, HG; Zmuidzinas, J., A wideband, low-noise superconducting amplifier with high dynamic range, Nat Phys, 8, 8, 623-627, (2012)
[196] Bockstiegel, C.; Gao, J.; Vissers, M.; Sandberg, M.; Chaudhuri, S.; Sanders, A.; Vale, L.; Irwin, K.; Pappas, D., Development of a broadband nbtin traveling wave parametric amplifier for mkid readout, J Low Temp Phys, 176, 3, 476-482, (2014)
[197] Adamyan, A.; De Graaf, S.; Kubatkin, S.; Danilov, A., Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line, J Appl Phys, 119, 8, 083901, (2016)
[198] Goldstein, S.; Kirsh, N.; Svetitsky, E.; Zamir, Y.; Hachmo, O.; de Oliveira, CEM; Katz, N., Four wave-mixing in a microstrip kinetic inductance travelling wave parametric amplifier, Appl Phys Lett, 116, 15, 152602, (2020)
[199] Blais, A.; Huang, R-S; Wallraff, A.; Girvin, SM; Schoelkopf, RJ, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation, Phys Rev A, 69, 6, 062320, (2004)
[200] Wei, L.; Liu, Y-X; Nori, F., Quantum computation with Josephson qubits using a current-biased information bus, Phys Rev B, 71, 13, 134506, (2005)
[201] Majer, J.; Chow, J.; Gambetta, J.; Koch, J.; Johnson, B.; Schreier, J.; Frunzio, L.; Schuster, D.; Houck, AA; Wallraff, A., Coupling superconducting qubits via a cavity bus, Nature, 449, 7161, 443-447, (2007)
[202] Renger, M.; Pogorzalek, S.; Chen, Q.; Nojiri, Y.; Inomata, K.; Nakamura, Y.; Partanen, M.; Marx, A.; Gross, R.; Deppe, F., Beyond the standard quantum limit for parametric amplification of broadband signals, npj Quantum Inf, 7, 1, 1-7, (2021)
[203] Huang, W.; Zhou, Y.; Tao, Z.; Zhang, L.; Liu, S.; Chen, Y.; Yan, T.; Yu, D., A superconducting coplanar waveguide ring resonator as quantum bus for circuit quantum electrodynamics, Appl Phys Lett, 118, 18, 184001, (2021)
[204] Song, C.; Xu, K.; Li, H.; Zhang, Y-R; Zhang, X.; Liu, W.; Guo, Q.; Wang, Z.; Ren, W.; Hao, J., Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science, 365, 6453, 574-577, (2019)
[205] Blais, A.; Grimsmo, AL; Girvin, SM; Wallraff, A., Circuit quantum electrodynamics, Rev Mod Phys, 93, 2, 025005, (2021)
[206] Wallraff, A.; Schuster, DI; Blais, A.; Frunzio, L.; Huang, R-S; Majer, J.; Kumar, S.; Girvin, SM; Schoelkopf, RJ, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, 431, 7005, 162-167, (2004)
[207] Megrant, A.; Neill, C.; Barends, R.; Chiaro, B.; Chen, Y.; Feigl, L.; Kelly, J.; Lucero, E.; Mariantoni, M.; O’Malley, PJ, Planar superconducting resonators with internal quality factors above one million, Appl Phys Lett, 100, 11, 113510, (2012)
[208] He, Q.; OuYang, P.; Gao, H.; He, S.; Li, Y.; Wang, Y.; Chen, Y.; Dai, X.; Wei, L., Low-loss superconducting aluminum microwave coplanar waveguide resonators on sapphires for the qubit readouts, Supercond Sci Technol, 35, 6, 065017, (2022)
[209] Göppl, M.; Fragner, A.; Baur, M.; Bianchetti, R.; Filipp, S.; Fink, JM; Leek, PJ; Puebla, G.; Steffen, L.; Wallraff, A., Coplanar waveguide resonators for circuit quantum electrodynamics, J Appl Phys, 104, 11, 113904, (2008)
[210] Carter, FW; Khaire, T.; Chang, C.; Novosad, V., Low-loss single-photon nbn microwave resonators on si, Appl Phys Lett, 115, 9, 092602, (2019)
[211] Vissers, MR; Gao, J.; Wisbey, DS; Hite, DA; Tsuei, CC; Corcoles, AD; Steffen, M.; Pappas, DP, Low loss superconducting titanium nitride coplanar waveguide resonators, Appl Phys Lett, 97, 23, 232509, (2010)
[212] O’Connell, AD; Ansmann, M.; Bialczak, RC; Hofheinz, M.; Katz, N.; Lucero, E.; McKenney, C.; Neeley, M.; Wang, H.; Weig, EM, Microwave dielectric loss at single photon energies and millikelvin temperatures, Appl Phys Lett, 92, 11, 112903, (2008)
[213] Woods, W.; Calusine, G.; Melville, A.; Sevi, A.; Golden, E.; Kim, DK; Rosenberg, D.; Yoder, JL; Oliver, WD, Determining interface dielectric losses in superconducting coplanar-waveguide resonators, Phys Rev Appl, 12, 1, 014012, (2019)
[214] Mazin, BA; Sank, D.; McHugh, S.; Lucero, EA; Merrill, A.; Gao, J.; Pappas, D.; Moore, D.; Zmuidzinas, J., Thin film dielectric microstrip kinetic inductance detectors, Appl Phys Lett, 96, 10, 102504, (2010)
[215] Martinis, JM; Cooper, KB; McDermott, R.; Steffen, M.; Ansmann, M.; Osborn, K.; Cicak, K.; Oh, S.; Pappas, DP; Simmonds, RW, Decoherence in Josephson qubits from dielectric loss, Phys Rev Lett, 95, 21, 210503, (2005)
[216] Gao, J.; Daal, M.; Vayonakis, A.; Kumar, S.; Zmuidzinas, J.; Sadoulet, B.; Mazin, BA; Day, PK; Leduc, HG, Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators, Appl Phys Lett, 92, 15, 152505, (2008)
[217] Weides MP, Kline JS, Vissers MR, Sandberg MO, Wisbey DS, Johnson BR, Ohki TA, Pappas DP (2011) Coherence in a transmon qubit with epitaxial tunnel junctions. Appl Phys Lett 99(26):262502. doi:10.1063/1.3672000. Accessed 18 Mar 2022
[218] Qiu, W.; Makise, K.; Terai, H., Dielectric loss in superconducting NbN (200) CPW resonator developed on Si substrate, IEEE Trans Appl Supercond, (2017) · doi:10.1109/TASC.2017.2649840
[219] Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.; Zijlstra, T.; Klapwijk, T.; Diener, P.; Yates, S.; Baselmans, J., Minimal resonator loss for circuit quantum electrodynamics, Appl Phys Lett, 97, 2, 023508, (2010)
[220] Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C-V, Vu K, Whyland T, Mohan Y, Sete EA et al (2019) Manufacturing low dissipation superconducting quantum processors 31-1. IEEE
[221] Cho, K-H; Patel, U.; Podkaminer, J.; Gao, Y.; Folkman, C.; Bark, C.; Lee, S.; Zhang, Y.; Pan, X.; McDermott, R., Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits, APL Mater, 1, 4, 042115, (2013)
[222] Bruno A, de Lange G, Asaad S, van der Enden KL, Langford NK, DiCarlo L (2015) Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl Phys Lett 106(18):182601. doi:10.1063/1.4919761. Accessed 8 Mar 2022
[223] Gambetta, JM; Murray, CE; Fung, Y-K-K; McClure, DT; Dial, O.; Shanks, W.; Sleight, JW; Steffen, M., Investigating surface loss effects in superconducting transmon qubits, IEEE Trans Appl Supercond, (2017) · doi:10.1109/TASC.2016.2629670
[224] Quintana CM, Megrant A, Chen Z, Dunsworth A, Chiaro B, Barends R, Campbell B, Chen Y, Hoi I-C, Jeffrey E, Kelly J, Mutus JY, O’Malley PJJ, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Cleland AN, Martinis JM (2014) Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits. Appl Phys Lett 105(6):062601. doi:10.1063/1.4893297. Accessed 8 Mar 2022
[225] Dunsworth A, Megrant A, Quintana C, Chen Z, Barends R, Burkett B, Foxen B, Chen Y, Chiaro B, Fowler A, Graff R, Jeffrey E, Kelly J, Lucero E, Mutus JY, Neeley M, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Martinis JM (2017) Characterization and reduction of capacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits. Appl Phys Lett 111(2):022601. doi:10.1063/1.4993577. Publisher: American Institute of Physics. Accessed 10 Mar 2022
[226] Calusine G, Melville A, Woods W, Das R, Stull C, Bolkhovsky V, Braje D, Hover D, Kim DK, Miloshi X, Rosenberg D, Sevi A, Yoder JL, Dauler E, Oliver WD (2018) Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators. Appl Phys Lett 112(6):062601. doi:10.1063/1.5006888. Accessed 8 Mar 2022
[227] Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf RJ, Devoret MH (2012) Improving the quality factor of microwave compact resonators by optimizing their geometrical parameters. Appl Phys Lett 100(19):192601. doi:10.1063/1.4710520. Accessed 8 Mar 2022
[228] Sage JM, Bolkhovsky V, Oliver WD, Turek B, Welander PB (2011) Study of loss in superconducting coplanar waveguide resonators. J Appl Phys 109(6):063915. doi:10.1063/1.3552890. Accessed 21 Mar 2022
[229] Yost DRW, Schwartz ME, Mallek J, Rosenberg D, Stull C, Yoder JL, Calusine G, Cook M, Das R, Day AL, Golden EB, Kim DK, Melville A, Niedzielski BM, Woods W, Kerman AJ, Oliver WD (2020) Solid-state qubits integrated with superconducting through-silicon vias. npj Quantum Inf 6(1):59. doi:10.1038/s41534-020-00289-8. Accessed 21 Mar 2022
[230] Torgovkin A, Chaudhuri S, Ruhtinas A, Lahtinen M, Sajavaara T, Maasilta IJ (2018) High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition. Supercond Sci Technol 31(5):055017. doi:10.1088/1361-6668/aab7d6. Accessed 21 Mar 2022
[231] Coumou, PCJJ; Zuiddam, MR; Driessen, EFC; de Visser, PJ; Baselmans, JJA; Klapwijk, TM, Microwave properties of superconducting atomic-layer deposited TiN films, IEEE Trans Appl Supercond., 23, 3, 7500404-7500404, (2013) · doi:10.1109/TASC.2012.2236603
[232] Shearrow A, Koolstra G, Whiteley SJ, Earnest N, Barry PS, Heremans FJ, Awschalom DD, Shirokoff E, Schuster DI (2018) Atomic layer deposition of titanium nitride for quantum circuits. Appl Phys Lett 113(21):212601. doi:10.1063/1.5053461. Accessed 21 Mar 2022
[233] Grabovskij GJ, Peichl T, Lisenfeld J, Weiss G, Ustinov AV (2012) Strain tuning of individual atomic tunneling systems detected by a superconducting qubit. Science 338(6104):232-234. doi:10.1126/science.1226487. Accessed 27 June 2022
[234] Sarabi B, Ramanayaka AN, Burin AL, Wellstood FC, Osborn KD (2016) Projected dipole moments of individual two-level defects extracted using circuit quantum electrodynamics. Phys Rev Lett 116(16):167002. doi:10.1103/PhysRevLett.116.167002. Accessed 27 June 2022
[235] Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis JM, Ustinov AV (2019) Electric field spectroscopy of material defects in transmon qubits. npj Quantum Inf5(1):1-6. doi:10.1038/s41534-019-0224-1. Accessed 24 June 2022
[236] Bilmes A, Volosheniuk S, Ustinov AV, Lisenfeld J (2022) Probing defect densities at the edges and inside Josephson junctions of superconducting qubits. npj Quantum Inf 8(1):1-6. doi:10.1038/s41534-022-00532-4. Accessed 9 Mar 2022
[237] Oh S, Cicak K, Kline JS, Sillanpää MA, Osborn KD, Whittaker JD, Simmonds RW, Pappas DP (2006) Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier. Phys Rev B 74(10):100502. doi:10.1103/PhysRevB.74.100502. Accessed 8 Mar 2022
[238] Osman A, Simon J, Bengtsson A, Kosen S, Krantz P, Lozano DP, Scigliuzzo M, Delsing P, Bylander J, Fadavi Roudsari A (2021) Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits. Appl Phys Lett 118(6):064002. doi:10.1063/5.0037093. Accessed 28 June 2022
[239] Bilmes A, Händel AK, Volosheniuk S, Ustinov AV, Lisenfeld J (2021) In-situ bandaged Josephson junctions for superconducting quantum processors. Supercond Sci Technol 34(12):125011. doi:10.1088/1361-6668/ac2a6d. Accessed 28 June 2022
[240] Premkumar A, Weiland C, Hwang S, Jäck B, Place APM, Waluyo I, Hunt A, Bisogni V, Pelliciari J, Barbour A, Miller MS, Russo P, Camino F, Kisslinger K, Tong X, Hybertsen MS, Houck AA, Jarrige I (2021) Microscopic relaxation channels in materials for superconducting qubits. Commun Mater 2(1):72. doi:10.1038/s43246-021-00174-7. Accessed 8 Mar 2022
[241] Place APM, Rodgers LVH, Mundada P, Smitham BM, Fitzpatrick M, Leng Z, Premkumar A, Bryon J, Vrajitoarea A, Sussman S, Cheng G, Madhavan T, Babla HK, Le XH, Gang Y, Jäck B, Gyenis A, Yao N, Cava RJ, de Leon NP, Houck AA (2021) New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat Commun 12(1):1779. doi:10.1038/s41467-021-22030-5. Accessed 8 Mar 2022
[242] Cava RJ, Batlogg B, Krajewski JJ, Poulsen HF, Gammel P, Peck WF, Rupp LW (1991) Electrical and magnetic properties of Nb 2 O 5 - crystallographic shear structures. Phys Rev B 44(13):6973-6981. doi:10.1103/PhysRevB.44.6973. Accessed 21 Mar 2022
[243] Face DW, Prober DE (1987) Nucleation of body-centered-cubic tantalum films with a thin niobium underlayer. J Vacuum Sci Technol A Vacuum Surf Films 5(6):3408-3411. doi:10.1116/1.574203. Accessed 21 Mar 2022
[244] Ristè D, Bultink CC, Tiggelman MJ, Schouten RN, Lehnert KW, DiCarlo L (2013) Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit. Nat Commun 4(1):1913. doi:10.1038/ncomms2936. Accessed 13 June 2022
[245] Lenander M, Wang H, Bialczak RC, Lucero E, Mariantoni M, Neeley M, O’Connell AD, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Cleland AN, Martinis JM (2011) Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles. Phys Rev B 84(2):024501. doi:10.1103/PhysRevB.84.024501
[246] Zmuidzinas J (2012) Superconducting Microresonators: Physics and Applications. Annual Review of Condensed Matter Physics 3(1):169-214. doi:10.1146/annurev-conmatphys-020911-125022. Accessed 24 Mar 2022
[247] Kaplan SB, Chi CC, Langenberg DN, Chang JJ, Jafarey S, Scalapino DJ (1976) Quasiparticle and phonon lifetimes in superconductors. Phys Rev B 14(11):4854-4873. doi:10.1103/PhysRevB.14.4854. Accessed 14 June 2022
[248] de Visser PJ, Goldie DJ, Diener P, Withington S, Baselmans JJA, Klapwijk TM (2014) Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator. Phys Rev Lett 112(4):047004. doi:10.1103/PhysRevLett.112.047004. Accessed 14 June 2022
[249] Leduc HG, Bumble B, Day PK, Eom BH, Gao J, Golwala S, Mazin BA, McHugh S, Merrill A, Moore DC, Noroozian O, Turner AD, Zmuidzinas J (2010) Titanium nitride films for ultrasensitive microresonator detectors. Appl Phys Lett 97(10):102509. doi:10.1063/1.3480420. Accessed 14 June 2022
[250] Barends R, Wenner J, Lenander M, Chen Y, Bialczak RC, Kelly J, Lucero E, O’Malley P, Mariantoni M, Sank D, Wang H, White TC, Yin Y, Zhao J, Cleland AN, Martinis JM, Baselmans JJA (2011) Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl Phys Lett 99(11):113507. doi:10.1063/1.3638063. Accessed 14 June 2022
[251] Córcoles AD, Chow JM, Gambetta JM, Rigetti C, Rozen JR, Keefe GA, Beth Rothwell M, Ketchen MB, Steffen M (2011) Protecting superconducting qubits from radiation. Appl Phys Lett 99(18):181906. doi:10.1063/1.3658630. Accessed 14 June 2022
[252] Houzet M, Serniak K, Catelani G, Devoret MH, Glazman LI (2019) Photon-assisted charge-parity jumps in a superconducting qubit. Phys Rev Lett 123(10):107704. doi:10.1103/PhysRevLett.123.107704. Accessed 28 June 2022
[253] Kreikebaum JM, Dove A, Livingston W, Kim E, Siddiqi I (2016) Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators. Supercond Sci Technol 29(10):104002. doi:10.1088/0953-2048/29/10/104002. Accessed 14 June 2022
[254] Vepsäläinen AP, Karamlou AH, Orrell JL, Dogra AS, Loer B, Vasconcelos F, Kim DK, Melville AJ, Niedzielski BM, Yoder JL, Gustavsson S, Formaggio JA, VanDevender BA, Oliver WD (2020) Impact of ionizing radiation on superconducting qubit coherence. Nature 584(7822):551-556. doi:10.1038/s41586-020-2619-8. Accessed 14 June 2022
[255] Cardani L, Valenti F, Casali N, Catelani G, Charpentier T, Clemenza M, Colantoni I, Cruciani A, D’Imperio G, Gironi L, Grünhaupt L, Gusenkova D, Henriques F, Lagoin M, Martinez M, Pettinari G, Rusconi C, Sander O, Tomei C, Ustinov AV, Weber M, Wernsdorfer W, Vignati M, Pirro S, Pop IM (2021) Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Nat Commun 12(1):2733. doi:10.1038/s41467-021-23032-z. Accessed 8 Mar 2022
[256] Martinis JM (2021) Optimal design of a superconducting transmon qubit with tapered wiring. arXiv:2104.01544. Accessed 28 June 2022
[257] Kurter C, Murray CE, Gordon RT, Wymore BB, Sandberg M, Shelby RM, Eddins A, Adiga VP, Finck ADK, Rivera E, Stabile AA, Trimm B, Wacaser B, Balakrishnan K, Pyzyna A, Sleight J, Steffen M, Rodbell K (2022) Quasiparticle tunneling as a probe of Josephson junction barrier and capacitor material in superconducting qubits. npj Quantum Inf 8(1):1-8. Accessed 22 Mar 2022
[258] Nsanzineza I, Plourde BLT (2014) Trapping a single vortex and reducing quasiparticles in a superconducting resonator. Phys Rev Lett 113(11):117002. doi:10.1103/PhysRevLett.113.117002. Accessed 13 June 2022
[259] Chiaro B, Megrant A, Dunsworth A, Chen Z, Barends R, Campbell B, Chen Y, Fowler A, Hoi IC, Jeffrey E, Kelly J, Mutus J, Neill C, O’Malley PJJ, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Martinis JM (2016) Dielectric surface loss in superconducting resonators with flux-trapping holes. Supercond Sci Technol 29(10):104006. doi:10.1088/0953-2048/29/10/104006. Accessed 13 June 2022
[260] Song C, Heitmann TW, DeFeo MP, Yu K, McDermott R, Neeley M, Martinis JM, Plourde BLT (2009) Microwave response of vortices in superconducting thin films of Re and Al. Phys Rev B 79(17):174512. doi:10.1103/PhysRevB.79.174512. Accessed 28 Mar 2022
[261] Sandberg M, Vissers MR, Ohki TA, Gao J, Aumentado J, Weides M, Pappas DP (2013) Radiation-suppressed superconducting quantum bit in a planar geometry. Appl Phys Lett 102(7):072601. doi:10.1063/1.4792698. Accessed 13 June 2022
[262] Goetz J, Deppe F, Haeberlein M, Wulschner F, Zollitsch CW, Meier S, Fischer M, Eder P, Xie E, Fedorov KG, Menzel EP, Marx A, Gross R (2016) Loss mechanisms in superconducting thin film microwave resonators. J Appl Phys 119(1):015304. doi:10.1063/1.4939299. Accessed 13 June 2022
[263] McRae CRH, Wang H, Gao J, Vissers MR, Brecht T, Dunsworth A, Pappas DP, Mutus J (2020) Materials loss measurements using superconducting microwave resonators. Rev Sci Instrum 91(9):091101. doi:10.1063/5.0017378. Accessed 13 June 2022
[264] Sheldon S, Sandberg M, Paik H, Abdo B, Chow JM, Steffen M, Gambetta JM (2017) Characterization of hidden modes in networks of superconducting qubits. Appl Phys Lett 111(22):222601. doi:10.1063/1.4990033. Accessed 14 June 2022
[265] Houck AA, Schreier JA, Johnson BR, Chow JM, Koch J, Gambetta JM, Schuster DI, Frunzio L, Devoret MH, Girvin SM, Schoelkopf RJ (2008) Controlling the spontaneous emission of a superconducting transmon qubit. Phys Rev Lett 101(8):080502. doi:10.1103/PhysRevLett.101.080502. Accessed 14 June 2022
[266] Rafferty O, Patel S, Liu CH, Abdullah S, Wilen CD, Harrison DC, McDermott R (2021) Spurious antenna modes of the transmon qubit. arXiv:2103.06803. Accessed 14 June 2022
[267] Wenner J, Neeley M, Bialczak RC, Lenander M, Lucero E, O’Connell AD, Sank D, Wang H, Weides M, Cleland AN, Martinis JM (2011) Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits. Supercond Sci Technol 24(6):065001. doi:10.1088/0953-2048/24/6/065001. Accessed 14 June 2022
[268] Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Y, Chiaro B, Dunsworth A, Jeffrey E, Mutus JY, O’Malley PJJ, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Cleland AN, Martinis JM (2014) Fabrication and characterization of aluminum airbridges for superconducting microwave circuits. Appl Phys Lett 104(5):052602. doi:10.1063/1.4863745. Accessed 14 June 2022
[269] Lei CU, Krayzman L, Ganjam S, Frunzio L, Schoelkopf RJ (2020) High coherence superconducting microwave cavities with indium bump bonding. Appl Phys Lett 116(15):154002. doi:10.1063/5.0003907. Accessed 14 June 2022
[270] Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, MH; Schoelkopf, RJ, Demonstration of superconducting micromachined cavities, Appl Phys Lett, 107, 19, 192603, (2015)
[271] Berke, C.; Varvelis, E.; Trebst, S.; Altland, A.; DiVincenzo, DP, Transmon platform for quantum computing challenged by chaotic fluctuations, Nat Commun, 13, 1, 1-10, (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.