×

Genuine entanglement, distillability and quantum information masking under noise. (English) Zbl 1508.81136

Summary: Genuineness and distillability of entanglement play a key role in quantum information tasks, and they are easily disturbed by the noise. We construct a family of multipartite states without genuine entanglement and distillability sudden death across every bipartition, respectively. They are realized by establishing the noise as the multipartite high-dimensional Pauli channels. Further, we construct a locally unitary channel as another noise such that the multipartite Greenberger-Horne-Zeilinger state becomes the Dür’s multipartite state. We also show that the quantum information masking still works under the noise we constructed and thus show a novel quantum secret sharing scheme under noise. The evolution of a family of three-qutrit genuinely entangled states distillable across every bipartition under noise is also investigated.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P48 LOCC, teleportation, dense coding, remote state operations, distillation

References:

[1] Raussendorf, R.; Briegel, HJ, A one-way quantum computer, Phys. Rev. Lett., 86, 5188-5191 (2001) · doi:10.1103/PhysRevLett.86.5188
[2] Muralidharan, S.; Panigrahi, PK, Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state, Phys. Rev. A, 77 (2008) · doi:10.1103/PhysRevA.77.032321
[3] Guo, Y.; Hu, X-M; Liu, B-H; Huang, Y-F; Li, C-F; Guo, G-C, Experimental witness of genuine high-dimensional entanglement, Phys. Rev. A, 97 (2018) · doi:10.1103/PhysRevA.97.062309
[4] Tóth, G.; Gühne, O., Detecting genuine multipartite entanglement with two local measurements, Phys. Rev. Lett., 94 (2005) · doi:10.1103/PhysRevLett.94.060501
[5] Hu, X.-M., Zhang, C., Liu, B.-H., Cai, Y., Ye, X.-J., Guo, Y., Xing, W.-B., Huang, C.-X., Huang, Y.-F., Li, C.-F., Guo, G.-C.: Experimental high-dimensional quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020). doi:10.1103/PhysRevLett.125.230501
[6] Dhar, H.S., Sen(De), A., Sen, U.: Characterizing genuine multisite entanglement in isotropic spin lattices. Phys. Rev. Lett. 111,(2013). doi:10.1103/PhysRevLett.111.070501 · Zbl 1451.82038
[7] Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental greenberger-horne-zeilinger entanglement beyond qubits. Nature Photonics, (2018) · Zbl 0714.65036
[8] Yeo, Y.; Chua, WK, Teleportation and dense coding with genuine multipartite entanglement, Phys. Rev. Lett., 96 (2006) · doi:10.1103/PhysRevLett.96.060502
[9] Man, Z-X; Xia, Y-J; An, NB, Genuine multiqubit entanglement and controlled teleportation, Phys. Rev. A., 75 (2007) · doi:10.1103/PhysRevA.75.052306
[10] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413-1415 (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[11] Doherty, AC; Parrilo, PA; Spedalieri, FM, Distinguishing separable and entangled states, Phys. Rev. Lett., 88 (2002) · doi:10.1103/PhysRevLett.88.187904
[12] Horodecki, M.; Horodecki, P.; Horodecki, R., Mixed-state entanglement and distillation: is there a “bound” entanglement in nature?, Phys. Rev. Lett., 80, 5239-5242 (1998) · Zbl 0947.81005 · doi:10.1103/PhysRevLett.80.5239
[13] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865-942 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[14] Song, W.; Chen, L.; Zhu, S-L, Sudden death of distillability in qutrit-qutrit systems, Phys. Rev. A, 80 (2009) · doi:10.1103/PhysRevA.80.012331
[15] Ali, M., Distillability sudden death in qutrit-qutrit systems under global and multilocal dephasing, Phys. Rev. A, 81 (2010) · doi:10.1103/PhysRevA.81.042303
[16] Smith, G.; Smolin, JA, Degenerate quantum codes for pauli channels, Phys. Rev. Lett., 98 (2007) · doi:10.1103/PhysRevLett.98.030501
[17] Chiuri, A.; Rosati, V.; Vallone, G.; Pádua, S.; Imai, H.; Giacomini, S.; Macchiavello, C.; Mataloni, P., Experimental realization of optimal noise estimation for a general pauli channel, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.253602
[18] Xiao, L.; Lu Long, G.; Deng, F-G; Pan, J-W, Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A, 69 (2004) · doi:10.1103/PhysRevA.69.052307
[19] Wallman, JJ; Emerson, J., Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A, 94 (2016) · doi:10.1103/PhysRevA.94.052325
[20] Clerk, AA; Devoret, MH; Girvin, SM; Marquardt, F.; Schoelkopf, RJ, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., 82, 1155-1208 (2010) · Zbl 1205.81001 · doi:10.1103/RevModPhys.82.1155
[21] Cirac, JI; Ekert, AK; Huelga, SF; Macchiavello, C., Distributed quantum computation over noisy channels, Phys. Rev. A, 59, 4249-4254 (1999) · doi:10.1103/PhysRevA.59.4249
[22] F, S., W, J., Harper, R.: Efficient learning of quantum noise. Nat. Phys. 16, 1184-1188 (2020). doi:10.1038/s41567-020-0992-8
[23] Greenberger, DM; Horne, M.; Zeilinger, A., Bell theorem without inequalities for two particles. I. Efficient detectors, Phys. Rev. A., 78, 022110 (2008) · doi:10.1103/PhysRevA.78.022110
[24] Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829-1834 (1999). doi:10.1103/PhysRevA.59.1829 · Zbl 1368.81066
[25] Dai, H.-Y., Chen, P.-X., Li, C.-Z.: Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle ghz state and w state. Opt. Commun. 231(1), 281 - 287, (2004). http://www.sciencedirect.com/science/article/pii/S0030401803023241
[26] Modi, K., Pati, A.K., Sen(De), A., Sen, U.: Masking quantum information is impossible. Phys. Rev. Lett. 120, 230501 (2018). doi:10.1103/PhysRevLett.120.230501
[27] Cleve, R.; Gottesman, D.; Lo, H-K, How to share a quantum secret, Phys. Rev. Lett., 83, 648-651 (1999) · doi:10.1103/PhysRevLett.83.648
[28] Li, M-S; Wang, Y-L, Masking quantum information in multipartite scenario, Phys. Rev. A., 98 (2018) · doi:10.1103/PhysRevA.98.062306
[29] L, M.S., C, L., Z, X., Shi, F.: \( k \)-uniform states and quantum information masking. arXiv:2009.12497, (2020)
[30] Huber, M.; Mintert, F.; Gabriel, A.; Hiesmayr, BC, Detection of high-dimensional genuine multipartite entanglement of mixed states, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.210501
[31] Dür, W., Multipartite bound entangled states that violate bell’s inequality, Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.230402
[32] Zhu, H.; Chen, L.; Hayashi, M., Additivity and non-additivity of multipartite entanglement measures, New J. Phys., 12, 8, 083002 (2010) · Zbl 1448.81138 · doi:10.1088/1367-2630/12/8/083002
[33] Wei, T-C; Altepeter, JB; Goldbart, PM; Munro, WJ, Measures of entanglement in multipartite bound entangled states, Phys. Rev. A, 70 (2004) · Zbl 1227.81091 · doi:10.1103/PhysRevA.70.022322
[34] Resch, K.; Lindenthal, M.; Blauensteiner, B.; Bohm, HAF, Distributing entanglement and single photons through an intra-city, free-space quantum channel, Opt. Express, 13, 1, 202-209 (2005) · doi:10.1364/OPEX.13.000202
[35] Girard, M., Leung, D., Levick, J., Li, C.-K., Paulsen, V., Poon, Y. T., Watrous, J.: On the mixed-unitary rank of quantum channels. arXiv:2003.14405, (2020) · Zbl 0714.65036
[36] Ghose, S.; Sinclair, N.; Debnath, S.; Rungta, P.; Stock, R., Tripartite entanglement versus tripartite nonlocality in three-qubit greenberger-horne-zeilinger-class states, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.250404
[37] Horodecki, P.; Horodecki, R., Distillation and bound entanglement, Quantum Inf. Comput., 1, 1, 45-75 (2001) · Zbl 1187.81018
[38] Halder, S.; Sengupta, R., Construction of noisy bound entangled states and the range criterion, Phys. Lett. A, 383, 17, 2004-2010 (2019) · Zbl 1476.81013 · doi:10.1016/j.physleta.2019.04.003
[39] Dür, W.; Cirac, JI; Lewenstein, M.; Bruß, D., Distillability and partial transposition in bipartite systems, Phys. Rev. A, 61 (2000) · doi:10.1103/PhysRevA.61.062313
[40] DiVincenzo, DP; Shor, PW; Smolin, JA; Terhal, BM; Thapliyal, AV, Evidence for bound entangled states with negative partial transpose, Phys. Rev. A., 61 (2000) · doi:10.1103/PhysRevA.61.062312
[41] Chen, K.; Wu, LA, A matrix realignment method for recognizing entanglement, Quantum Inf. Comput., 3, 3, 193-202 (2002) · Zbl 1152.81692
[42] Chen, K., Wu, L.-A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306(1):14-20, (2002). http://www.sciencedirect.com/science/article/pii/S0375960102015384 · Zbl 1005.81010
[43] Sharma, A.; Tulapurkar, AA, Generation of \(n\)-qubit \(w\) states using spin torque, Phys. Rev. A, 101 (2020) · doi:10.1103/PhysRevA.101.062330
[44] Bradley, C.E., Randall, J., Abobeih, M.H., Berrevoets, R.C., Degen, M.J., Bakker, M.A., Markham, M., Twitchen, D.J., Taminiau, T.H.: A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9,(2019). doi:10.1103/PhysRevX.9.031045
[45] Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., Lu, H., Hu, Y., Jiang, X., Peng, C.-Z., Li, L., Liu, N.-L., Chen, Y.-A., Lu, C.-Y., Pan, J.-W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117,(2016). doi:10.1103/PhysRevLett.117.210502
[46] Yu, S.; Liu, N-L, Entanglement detection by local orthogonal observables, Phys. Rev. Lett., 95 (2005) · Zbl 1255.81041 · doi:10.1103/PhysRevLett.95.150504
[47] Carvacho, G., Graffitti, F., D’Ambrosio, V., Hiesmayr, B. C., Sciarrino, F.: Experimental investigation on the geometry of ghz states. Sci. Rep. 7(1), (2017)
[48] Horodecki, M.; Horodecki, P.; Horodecki, R., Inseparable two spin- \( \frac{1}{2}\) density matrices can be distilled to a singlet form, Phys. Rev. Lett., 78, 574-577 (1997) · Zbl 1053.81504 · doi:10.1103/PhysRevLett.78.574
[49] Michal Horodecki, P. H., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A, 283(1), 1-7, (2001). https://www.sciencedirect.com/science/article/pii/S0375960101001426 · Zbl 0984.81007
[50] Agrawal, S.; Halder, S.; Banik, M., Genuinely entangled subspace with all-encompassing distillable entanglement across every bipartition, Phys. Rev. A, 99 (2019) · doi:10.1103/PhysRevA.99.032335
[51] Ann, K.; Jaeger, G., Local-dephasing-induced entanglement sudden death in two-component finite-dimensional systems, Phys. Rev. A, 76 (2007) · doi:10.1103/PhysRevA.76.044101
[52] Bhattacharya, B., Goswami, S., Mundra, R., Ganguly, N., Chakrabarty, I., Bhattacharya, S., Majumdar, A. S.: Generating and detecting bound entanglement in two-qutrits using a family of indecomposable positive maps. arXiv:Quantum Physics, (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.