×

Time-evolution of nonlinear optomechanical systems: interplay of mechanical squeezing and non-Gaussianity. (English) Zbl 1514.81057

Summary: We solve the time evolution of a nonlinear optomechanical Hamiltonian with arbitrary time-dependent mechanical displacement, mechanical single-mode squeezing and a time-dependent optomechanical coupling up to the solution of two second-order differential equations. The solution is based on identifying a minimal and finite Lie algebra that generates the time-evolution of the system. This reduces the problem to considering a finite set of coupled ordinary differential equations of real functions. To demonstrate the applicability of our method, we compute the degree of non-Gaussianity of the time-evolved state of the system by means of a measure based on the relative entropy of the non-Gaussian state and its closest Gaussian reference state. We find that the addition of a constant mechanical squeezing term to the standard optomechanical Hamiltonian generally decreases the overall non-Gaussian character of the state. For sinusoidally modulated squeezing, the two second-order differential equations mentioned above take the form of the Mathieu equation. We derive perturbative solutions for a small squeezing amplitude at parametric resonance and show that they correspond to the rotating-wave approximation at times larger than the scale set by the mechanical frequency. We find that the non-Gaussianity of the state increases with both time and the squeezing parameter in this specific regime.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81R30 Coherent states
81V80 Quantum optics

References:

[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys.86 1391 · doi:10.1103/RevModPhys.86.1391
[2] Bowen W P and Milburn G J 2015 Quantum Optomechanics (Boca Raton, FL: CRC Press) · Zbl 1358.81002 · doi:10.1201/b19379
[3] Serafini A 2017 Quantum Continuous Variables: a Primer of Theoretical Methods (Boca Raton, FL: CRC Press) · Zbl 1386.81005 · doi:10.1201/9781315118727
[4] Sankey J C, Yang C, Zwickl B M, Jayich A M and Harris J G 2010 Nat. Phys.6 707 · doi:10.1038/nphys1707
[5] Leijssen R, La Gala G R, Freisem L, Muhonen J T and Verhagen E 2017 Nat. Commun.8 ncomms16024 · doi:10.1038/ncomms16024
[6] Fogliano F, Besga B, Reigue A, Heringlake P, de Lépinay L M, Vaneph C, Reichel J, Pigeau B and Arcizet O 2019 (arXiv:1904.01140)
[7] Bose S, Jacobs K and Knight P 1997 Phys. Rev. A 56 4175 · doi:10.1103/PhysRevA.56.4175
[8] Mancini S, Man’ko V and Tombesi P 1997 Phys. Rev. A 55 3042 · doi:10.1103/PhysRevA.55.3042
[9] Qvarfort S, Serafini A, Xuereb A, Rätzel D and Bruschi D E E 2019 New J. Phys. (https://doi.org/10.1088/1367-2630/ab1b9e)
[10] Zurek W H 2001 Nature412 712 · doi:10.1038/35089017
[11] Toscano F, Dalvit D A, Davidovich L and Zurek W H 2006 Phys. Rev. A 73 023803 · doi:10.1103/PhysRevA.73.023803
[12] Howard L, Weinhold T, Combes J, Shahandeh F, Vanner M, Ringbauer M and White A 2018 (arXiv:1811.03011)
[13] Lemonde M A, Didier N and Clerk A A 2016 Nat. Commun.7 11338 · doi:10.1038/ncomms11338
[14] Latmiral L, Armata F, Genoni M G, Pikovski I and Kim M 2016 Phys. Rev. A 93 052306 · doi:10.1103/PhysRevA.93.052306
[15] Yin T S, Lü X Y, Zheng L L, Wang M, Li S and Wu Y 2017 Phys. Rev. A 95 053861 · doi:10.1103/PhysRevA.95.053861
[16] Doolin C, Hauer B, Kim P, MacDonald A, Ramp H and Davis J 2014 Phys. Rev. A 89 053838 · doi:10.1103/PhysRevA.89.053838
[17] Lloyd S and Braunstein S L 1999 Quantum Information with Continuous Variables (Berlin: Springer) pp 9-17 · doi:10.1007/978-94-015-1258-9_2
[18] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C and Nielsen M A 2006 Phys. Rev. Lett.97 110501 · doi:10.1103/PhysRevLett.97.110501
[19] Dell’Anno F, De Siena S, Adesso G and Illuminati F 2010 Phys. Rev. A 82 062329 · doi:10.1103/PhysRevA.82.062329
[20] Fiurášek J 2002 Phys. Rev. Lett.89 137904 · Zbl 1267.81032 · doi:10.1103/PhysRevLett.89.137904
[21] Giedke G and Cirac J I 2002 Phys. Rev. A 66 032316 · doi:10.1103/PhysRevA.66.032316
[22] Niset J, Fiurášek J and Cerf N J 2009 Phys. Rev. Lett.102 120501 · doi:10.1103/PhysRevLett.102.120501
[23] Zhuang Q, Shor P W and Shapiro J H 2018 Phys. Rev. A 97 052317 · doi:10.1103/PhysRevA.97.052317
[24] Takagi R and Zhuang Q 2018 Phys. Rev. A 97 062337 · doi:10.1103/PhysRevA.97.062337
[25] Albarelli F, Genoni M G, Paris M G A and Ferraro A 2018 Phys. Rev. A 98 052350 · doi:10.1103/PhysRevA.98.052350
[26] Aasi J et al 2013 Nat. Photon.7 613 · doi:10.1038/nphoton.2013.177
[27] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys.82 1155 · Zbl 1205.81001 · doi:10.1103/RevModPhys.82.1155
[28] Wei J and Norman E 1963 J. Math. Phys.4 575-81 · Zbl 0133.34202 · doi:10.1063/1.1703993
[29] Wilcox R 1967 J. Math. Phys.8 962-82 · Zbl 0173.29604 · doi:10.1063/1.1705306
[30] Puri R R 2001 Mathematical Methods of Quantum Optics vol 79 (Berlin: Springer) · Zbl 1041.81108 · doi:10.1007/978-3-540-44953-9
[31] Bruschi D E and Xuereb A 2018 New J. Phys. (https://doi.org/10.1088/1367-2630/aaca27)
[32] Bruschi D E 2018 (arXiv:1812.06879)
[33] Genoni M G, Paris M G and Banaszek K 2008 Phys. Rev. A 78 060303 · doi:10.1103/PhysRevA.78.060303
[34] Marian P and Marian T A 2013 Phys. Rev. A 88 012322 · doi:10.1103/PhysRevA.88.012322
[35] Favero I and Karrai K 2009 Nat. Photon.3 201 · doi:10.1038/nphoton.2009.42
[36] Jayich A, Sankey J, Zwickl B, Yang C, Thompson J, Girvin S, Clerk A, Marquardt F and Harris J 2008 New J. Phys.10 095008 · doi:10.1088/1367-2630/10/9/095008
[37] Yin Z Q, Li T, Zhang X and Duan L 2013 Phys. Rev. A 88 033614 · doi:10.1103/PhysRevA.88.033614
[38] Eichenfield M, Camacho R, Chan J, Vahala K J and Painter O 2009 Nature459 550 · doi:10.1038/nature08061
[39] Safavi-Naeini A H, Hill J T, Meenehan S, Chan J, Gröblacher S and Painter O 2014 Phys. Rev. Lett.112 153603 · doi:10.1103/PhysRevLett.112.153603
[40] Qvarfort S, Serafini A, Barker P F and Bose S 2018 Nat. Commun.9 3690 · doi:10.1038/s41467-018-06037-z
[41] Armata F, Latmiral L, Plato A and Kim M 2017 Phys. Rev. A 96 043824 · doi:10.1103/PhysRevA.96.043824
[42] Blencowe M 2004 Phys. Rep.395 159-222 · doi:10.1016/j.physrep.2003.12.005
[43] Adesso G, Ragy S and Lee A R 2014 Open Syst. Inf. Dyn.21 1440001 · Zbl 1295.81026 · doi:10.1142/S1230161214400010
[44] Alsing P M and Fuentes I 2012 Class. Quantum Grav.29 224001 · Zbl 1266.83091 · doi:10.1088/0264-9381/29/22/224001
[45] Birrell N D, Birrell N D and Davies P 1984 Quantum Fields in Curved Space vol 7 (Cambridge: Cambridge University Press) · Zbl 0972.81605
[46] Williamson J 1936 Am. J. Math.58 141-63 · JFM 63.1290.01 · doi:10.2307/2371062
[47] Bruschi D E, Lee A R and Fuentes I 2013 J. Phys. A: Math. Theor.46 165303 · Zbl 1267.81026 · doi:10.1088/1751-8113/46/16/165303
[48] Brown E G, Martín-Martínez E, Menicucci N C and Mann R B 2013 Phys. Rev. D 87 084062 · doi:10.1103/PhysRevD.87.084062
[49] Moore C and Bruschi D E 2016 (arXiv:quant-phy/1601.01919)
[50] Araki H and Lieb E H 2002 Inequalities (Berlin: Springer) pp 47-57 · doi:10.1007/978-3-642-55925-9_4
[51] Johansson J R, Nation P D and Nori F 2013 Comput. Phys. Commun.184 1234-40 · doi:10.1016/j.cpc.2012.11.019
[52] Emary C and Brandes T 2003 Phys. Rev. E 67 066203 · doi:10.1103/PhysRevE.67.066203
[53] Kovacic I, Rand R and Sah S M 2018 Appl. Mech. Rev.70 020802 · doi:10.1115/1.4039144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.