×

Universal quantum gates for path photonic qubit. (English) Zbl 1508.81996

Summary: The codification of qubits in internal degrees of freedom (DoF) of light as polarization, transverse modes, and path has received a lot of attention lately. However, the qubit codified in path DoF often plays a limited role in the circuits. In this work, we present a linear optical circuit to codify qubits in path on different bases. We also present geometrical representations for path DoF as Poincaré-like sphere and the Bloch sphere for path qubit. In addition, we designed linear optical circuits to construct universal quantum gates for photonic propagation path DoF. The well-known analogy between degrees of freedom of a coherent laser beam and quantum systems is explored to experimentally simulate the preparation of the qubits as well as the implementation of the proposed circuit for the quantum gates. The results show a clear agreement with the predictions of quantum theory.

MSC:

81V80 Quantum optics
81P65 Quantum gates
Full Text: DOI

References:

[1] Cirac, JI; Zoller, P., Quantum computations with cold trapped ions, Phys. Rev. Lett., 74, 20, 4091 (1995) · doi:10.1103/PhysRevLett.74.4091
[2] Häffner, H.; Roos, CF; Blatt, R., Quantum computing with trapped ions, Phys. Rep., 469, 4, 155 (2008) · doi:10.1016/j.physrep.2008.09.003
[3] Loss, D.; DiVincenzo, DP, Quantum computation with quantum dots, Phys. Rev. A, 57, 1, 120 (1998) · doi:10.1103/PhysRevA.57.120
[4] Gershenfeld, NA; Chuang, IL, Bulk spin-resonance quantum computation, Science, 275, 5298, 350 (1997) · Zbl 1226.81047 · doi:10.1126/science.275.5298.350
[5] Raimond, JM; Brune, M.; Haroche, S., Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Modern Phys., 73, 3, 565 (2001) · Zbl 1205.81029 · doi:10.1103/RevModPhys.73.565
[6] Devoret, M.H., Martinis, J.M.: Implementing qubits with superconducting integrated circuits, Experimental aspects of quantum computing pp. 163-203 (2005) · Zbl 1075.68599
[7] Knill, E.; Laflamme, R.; Milburn, GJ, A scheme for efficient quantum computation with linear optics, Nature, 409, 6816, 46 (2001) · doi:10.1038/35051009
[8] Walther, P.; Resch, KJ; Rudolph, T.; Schenck, E.; Weinfurter, H.; Vedral, V.; Aspelmeyer, M.; Zeilinger, A., Experimental one-way quantum computing, Nature, 434, 7030, 169 (2005) · doi:10.1038/nature03347
[9] Lin, Q.; He, B., Single-photon logic gates using minimal resources, Phys. Rev. A, 80, 4, 042310 (2009) · doi:10.1103/PhysRevA.80.042310
[10] Hor-Meyll, M.; Tasca, D.; Walborn, S.; Ribeiro, PS; Santos, M.; Duzzioni, E., Deterministic quantum computation with one photonic qubit, Phys. Rev. A, 92, 1, 012337 (2015) · doi:10.1103/PhysRevA.92.012337
[11] Kielpinski, D.; Volin, C.; Streed, EW; Lenzini, F.; Lobino, M., Integrated optics architecture for trapped-ion quantum information processing, Quant. Inf. Process., 15, 12, 5315 (2016) · doi:10.1007/s11128-015-1162-2
[12] Dowling, J.P., Franson, J., Lee, H., Milburn, G.J.: in Experimental Aspects of Quantum Computing (Springer, 2005), pp. 205-213 · Zbl 1130.81318
[13] Hayes, A.; Gilchrist, A.; Myers, CR; Ralph, T., Utilizing encoding in scalable linear optics quantum computing, J. Opt. B Quant. Semiclass. Opt., 6, 12, 533 (2004) · doi:10.1088/1464-4266/6/12/008
[14] Babazadeh, A.; Erhard, M.; Wang, F.; Malik, M.; Nouroozi, R.; Krenn, M.; Zeilinger, A., High-dimensional single-photon quantum gates: concepts and experiments, Phys. Rev. Lett., 119, 18, 180510 (2017) · doi:10.1103/PhysRevLett.119.180510
[15] De Oliveira, A.; Walborn, S.; Monken, C., Implementing the Deutsch algorithm with polarization and transverse spatial modes, J. Opt. B Quant. Semiclass. Opt., 7, 9, 288 (2005) · doi:10.1088/1464-4266/7/9/009
[16] Barreiro, JT; Wei, TC; Kwiat, PG, Remote preparation of single-photon hybrid entangled and vector-polarization states, Phys. Rev. Lett., 105, 3, 030407 (2010) · doi:10.1103/PhysRevLett.105.030407
[17] D’ambrosio, V.; Nagali, E.; Walborn, SP; Aolita, L.; Slussarenko, S.; Marrucci, L.; Sciarrino, F., Complete experimental toolbox for alignment-free quantum communication, Nat. Commun., 3, 1, 1 (2012)
[18] Balthazar, WF; Souza, CER; Caetano, DP; Galvão, EF; Huguenin, JAO; Khoury, AZ, Tripartite nonseparability in classical optics, Opt. Lett., 41, 5797 (2016) · doi:10.1364/OL.41.005797
[19] Borges, CVS; Hor-Meyll, M.; Huguenin, JAO; Khoury, AZ, Bell-like inequality for the spin-orbit separability of a laser beam, Phys. Rev. A, 82, 033833 (2010) · doi:10.1103/PhysRevA.82.033833
[20] Kagalwala, KH; Di Giuseppe, G.; Abouraddy, AF; Saleh, BEA, Bell’s measure in classical optical coherence, Nat. Photon. (2012) · doi:10.1038/nphoton.2012.312
[21] Pereira, LJ; Khoury, AZ; Dechoum, K., Quantum and classical separability of spin-orbit laser modes, Phys. Rev. A, 90, 053842 (2014) · doi:10.1103/PhysRevA.90.053842
[22] Balthazar, W.; Braga, D.; Lamego, V.; Passos, MM; Huguenin, J., Spin-orbit x states, Phys. Rev. A, 103, 2, 022411 (2021) · doi:10.1103/PhysRevA.103.022411
[23] Balthazar, WF; Caetano, DP; Souza, CER; Huguenin, JAO, Using polarization to control the phase of spatial modes for application in quantum information, Brazilian J. Phys., 44, 6, 658 (2014) · doi:10.1007/s13538-014-0250-6
[24] Souza, CER; Borges, CVS; Khoury, AZ; Huguenin, JAO; Aolita, L.; Walborn, SP, Quantum key distribution without a shared reference frame, Phys. Rev. A, 77, 032345 (2008) · Zbl 1255.81122 · doi:10.1103/PhysRevA.77.032345
[25] Milione, G.; Nguyen, TA; Leach, J.; Nolan, DA; Alfano, RR, Using the nonseparability of vector beams to encode information for optical communication, Opt. Lett., 40, 21, 4887 (2015) · doi:10.1364/OL.40.004887
[26] Khoury, AZ; Milman, P., Quantum teleportation in the spin-orbit variables of photon pairs, Phys. Rev. A, 83, 060301 (2011) · doi:10.1103/PhysRevA.83.060301
[27] Obando, PC; Passos, MHM; Paula, FM; Huguenin, JAO, Simulating Markovian quantum decoherence processes through an all-optical setup, Quant. Inf. Process., 19, 7, 1573 (2020) · Zbl 1508.81911 · doi:10.1007/s11128-019-2499-8
[28] Passos, MHM; Obando, PC; Balthazar, WF; Paula, FM; Huguenin, JAO; Sarandy, MS, Non-Markovianity through quantum coherence in an all-optical setup, Opt. Lett., 44, 10, 2478 (2019) · doi:10.1364/OL.44.002478
[29] Passos, MHM; Balthazar, WF; Khoury, AZ; Hor-Meyll, M.; Davidovich, L.; Huguenin, JAO, Experimental investigation of environment-induced entanglement using an all-optical setup, Phys. Rev. A, 97, 022321 (2018) · doi:10.1103/PhysRevA.97.022321
[30] Passos, MHM; Santos, AC; Sarandy, MS; Huguenin, JAO, Optical simulation of a quantum thermal machine, Phys. Rev. A, 100, 022113 (2019) · doi:10.1103/PhysRevA.100.022113
[31] Balthazar, WF; Huguenin, JAO, Conditional operation using three degrees of freedom of a laser beam for application in quantum information, J. Opt. Soc. Am. B, 33, 1649 (2016) · doi:10.1364/JOSAB.33.001649
[32] Nielsen, MA; Chuang, IL, Quantum Computation and Quantum Information: 10th Anniversary Edition (2011), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 1288.81001
[33] Souza, CER; Huguenin, JAO; Milman, P.; Khoury, AZ, Topological phase for spin-orbit transformations on a laser beam, Phys. Rev. Lett., 99, 160401 (2007) · doi:10.1103/PhysRevLett.99.160401
[34] Sheem, SK, Optical fiber interferometers with \([3 \times 3]\) directional couplers: Analysis, J. Appl. Phys., 52, 6, 3865 (1981) · doi:10.1063/1.329853
[35] Tearney, G.; Bouma, B.; Fujimoto, J., High-speed phase-and group-delay scanning with a grating-based phase control delay line, Opt. Lett., 22, 23, 1811 (1997) · doi:10.1364/OL.22.001811
[36] Jones, DJ; Diddams, SA; Ranka, JK; Stentz, A.; Windeler, RS; Hall, JL; Cundiff, ST, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, 288, 5466, 635 (2000) · doi:10.1126/science.288.5466.635
[37] Xavier, G.; de Faria, GV; Temporão, G.; Von der Weid, J., Full polarization control for fiber optical quantum communication systems using polarization encoding, Opt. Express, 16, 3, 1867 (2008) · doi:10.1364/OE.16.001867
[38] Hahn, V.; Kalt, S.; Sridharan, GM; Wegener, M.; Bhattacharya, S., Polarizing beam splitter integrated onto an optical fiber facet, Opt. Express, 26, 25, 33148 (2018) · doi:10.1364/OE.26.033148
[39] Silberhorn, C.; Lam, PK; Weiss, O.; König, F.; Korolkova, N.; Leuchs, G., Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber, Phys. Rev. Lett., 86, 19, 4267 (2001) · doi:10.1103/PhysRevLett.86.4267
[40] Ciampini, MA; Orieux, A.; Paesani, S.; Sciarrino, F.; Corrielli, G.; Crespi, A.; Ramponi, R.; Osellame, R.; Mataloni, P., Path-polarization hyperentangled and cluster states of photons on a chip, Light Sci. Appl., 5, 4, e16064 (2016) · doi:10.1038/lsa.2016.64
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.