×

Classicalization of quantum state of detector by amplification process. (English) Zbl 1472.81018

Summary: It has been shown that a macroscopic system being in a high-temperature thermal coherent state can be, in principle, driven into a non-classical state by coupling to a microscopic system. Therefore, thermal coherent states do not truly represent the classical limit of quantum description. Here, we study the classical limit of quantum state of a more relevant macroscopic system, namely the pointer of a detector, after the phase-preserving linear amplification process. In particular, we examine to what extent it is possible to find the corresponding amplified state in a superposition state, by coupling the pointer to a qubit system. We demonstrate quantitatively that the amplification process is able to produce the classical limit of quantum state of the pointer, offering a route for a classical state in a sense of not to be projected into a quantum superposition state.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81S22 Open systems, reduced dynamics, master equations, decoherence
81R30 Coherent states
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
81P68 Quantum computation

References:

[1] Zurek, W. H., Rev. Mod. Phys., 75, 715 (2003) · Zbl 1205.81031
[2] Schlosshauer, M., Rev. Mod. Phys., 76, 1267 (2005)
[3] Shahandeh, F.; Costa, F.; Lund, A. P.; Ralph, T. C. (2017)
[4] Bell, J. S., Speakable and Unspeakable in Quantum Mechanics (2004), Cambridge University Press · Zbl 1239.81002
[5] Landsman, N. P., (Handbook of the Philosophy of Science, vol. 2 (2006)), 417
[6] Bohr, N., Z. Phys., 13, 117 (1923)
[7] Schrödinger, E., Naturwissenschaften, 14, 664 (1926) · JFM 52.0967.01
[8] Schleich, W.; Pernigo, M.; Le Kien, F., Phys. Rev. A, 44, 2172 (1991)
[9] Bužek, V.; Vidiella-Barranco, A.; Knight, P. L., Phys. Rev. A, 45, 6570 (1992)
[10] Chai, C.-l., Phys. Rev. A, 46, 7187 (1992)
[11] Janszky, J.; Domokos, P.; Adam, P., Phys. Rev. A, 48, 2213 (1993)
[12] Janszky, J.; Domokos, P.; Szabó, S.; Adam, P., Phys. Rev. A, 51, 4191 (1995)
[13] Szabo, S.; Adam, P.; Janszky, J.; Domokos, P., Phys. Rev. A, 53, 2698 (1996)
[14] Wiseman, H. M.; Vaccaro, J. A., Phys. Rev. A, 65, Article 043605 pp. (2002)
[15] Wiseman, H. M.; Vaccaro, J. A., Phys. Rev. A, 65, Article 043606 pp. (2002)
[16] Johansen, L. M., Phys. Lett. A, 329, 184 (2004) · Zbl 1209.81133
[17] Cirel’son, B. S., Lett. Math. Phys., 4, 93 (1980)
[18] Grosshans, F.; Van Assche, G.; Wenger, J.; Brouri, R.; Cerf, N. J.; Grangier, P., Nature, 421, 238 (2003)
[19] Johansen, L. M., J. Opt. B, Quantum Semiclass. Opt., 6, L21 (2004)
[20] Jeong, H.; Ralph, T. C., Phys. Rev. Lett., 97, Article 100401 pp. (2006)
[21] Jeong, H.; Ralph, T. C., Phys. Rev. A, 76, Article 042103 pp. (2007)
[22] Zheng, S.-B., Phys. Rev. A, 75, Article 032114 pp. (2007)
[23] Jeong, H.; Lee, J.; Nha, H., J. Opt. Soc. Am. B, 25, 1025 (2008)
[24] Asadian, A.; Brukner, C.; Rabl, P., Phys. Rev. Lett., 112, Article 190402 pp. (2014)
[25] Machida, S.; Namiki, M., Prog. Theor. Phys., 63, 1457 (1980)
[26] Machida, S.; Namiki, M., Prog. Theor. Phys., 63, 1833 (1980)
[27] Araki, H., Prog. Theor. Phys., 64, 719 (1980) · Zbl 1097.81503
[28] Namiki, M.; Nakazato, H.; Pascazio, S., Decoherence and Quantum Measurements (1998), World Scientific
[29] Louisell, W.; Yariv, A.; Siegman, A., Phys. Rev., 124, 1646 (1961) · Zbl 0106.43405
[30] Heffner, H., Proc. IRE, 50, 1604 (1962)
[31] Haus, H. A.; Mullen, J., Phys. Rev., 128, 2407 (1962)
[32] Gordon, J.; Walker, L.; Louisell, W., Phys. Rev., 130, 806 (1963) · Zbl 0113.22302
[33] Gordon, J.; Louisell, W. H.; Walker, L., Phys. Rev., 129, 481 (1963) · Zbl 0117.44803
[34] Caves, C. M., Phys. Rev. D, 26, 1817 (1982)
[35] Clerk, A. A.; Devoret, M. H.; Girvin, S. M.; Marquardt, F.; Schoelkopf, R. J., Rev. Mod. Phys., 82, 1155 (2010) · Zbl 1205.81001
[36] Braginskii, V. B., Phys. Usp., 31, 836 (1988)
[37] Caves, C. M.; Thorne, K. S.; Drever, R. W.; Sandberg, V. D.; Zimmermann, M., Rev. Mod. Phys., 52, 341 (1980)
[38] Bocko, M. F.; Onofrio, R., Rev. Mod. Phys., 68, 755 (1996)
[39] Caves, C. M.; Combes, J.; Jiang, Z.; Pandey, S., Phys. Rev. A, 86, Article 063802 pp. (2012)
[40] Bassi, A.; Ghirardi, G., Phys. Rep., 379, 257 (2003) · Zbl 1034.81004
[41] Kofler, J.; Brukner, C., Phys. Rev. Lett., 99, Article 180403 pp. (2007)
[42] Zhuang, Q.; Schuster, T.; Yoshida, B.; Yao, N. Y. (2019)
[43] Rossi, M. A.; Foti, C.; Cuccoli, A.; Trapani, J.; Verrucchi, P.; Paris, M. G., Phys. Rev. A, 96, Article 032116 pp. (2017)
[44] Mollow, B.; Glauber, R., Phys. Rev., 160, 1076 (1967)
[45] Mollow, B. R.; Glauber, R. J., Phys. Rev., 160, 1097 (1967)
[46] Collett, M.; Walls, D., Phys. Rev. Lett., 61, 2442 (1988)
[47] Lee, C.-W.; Jeong, H., Phys. Rev. Lett., 106, Article 220401 pp. (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.