×

Uniformization of two-dimensional metric surfaces. (English) Zbl 1367.30044

The author studies metric spaces that are homeomorphic to the Euclidean plane or sphere and have locally finite Hausdorff 2-measure. The main result gives a necessary and sufficient condition for such spaces to be QC equivalent to the Euclidean plane, disk, or sphere. This result gives a new approach to the Bonk-Kleiner theorem on parametrizations of Ahlfors 2-regular spheres by quasisymmetric maps.

MSC:

30L10 Quasiconformal mappings in metric spaces
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
28A75 Length, area, volume, other geometric measure theory

References:

[1] Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318, 527-555 (2000) · Zbl 0966.28002 · doi:10.1007/s002080000122
[2] Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford University Press, Oxford (2004) · Zbl 1080.28001
[3] Astala, K., Bonk, M., Heinonen, J.: Quasiconformal mappings with Sobolev boundary values. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(3), 687-731 (2002) · Zbl 1170.30307
[4] Azzam, J., Badger, M., Toro, T.: Quasiconformal planes with bi-Lipschitz pieces and extensions of almost affine maps. Adv. Math. 275, 195-259 (2015) · Zbl 1320.30043 · doi:10.1016/j.aim.2015.02.008
[5] Ball, K.: Volumes of sections of cubes and related problems. In: Geometric aspects of functional analysis (1987-1988), Lecture Notes in Math., 1376, pp. 251-260. Springer, Berlin (1989) · Zbl 0858.46017
[6] Balogh, Z., Koskela, P., Rogovin, S.: Absolute continuity of quasiconformal mappings on curves. Geom. Funct. Anal. 17, 645-664 (2007) · Zbl 1134.30014 · doi:10.1007/s00039-007-0607-x
[7] Barthe, F.: Inégalités de Brascamp-Lieb et convexité. C. R. Acad. Scis. Paris 324, 885-888 (1997) · Zbl 0904.26011 · doi:10.1016/S0764-4442(97)86963-7
[8] Behrend, F.: Über einige Affininvarianten konvexer Bereiche. Math. Ann. 113(1), 713-747 (1937) · JFM 62.0834.03 · doi:10.1007/BF01571662
[9] Bonk, M.: Quasiconformal geometry of fractals. In: International Congress of Mathematicians. vol. II, pp. 1349-1373. European Mathematical Society, Zürich (2006) · Zbl 1102.30016
[10] Bonk, M.: Uniformization of Sierpinski carpets in the plane. Invent. Math. 186(3), 559-665 (2011) · Zbl 1242.30015 · doi:10.1007/s00222-011-0325-8
[11] Bonk, M., Kleiner, B.: Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math. 150(1), 127-183 (2002) · Zbl 1037.53023 · doi:10.1007/s00222-002-0233-z
[12] Bonk, M., Kleiner, B.: Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary. Geom. Topol. 9, 219-246 (2005) · Zbl 1087.20033 · doi:10.2140/gt.2005.9.219
[13] Bonk, M., Lang, U.: Bi-Lipschitz parametrization of surfaces. Math. Ann. 327(1), 135-169 (2003) · Zbl 1042.53044 · doi:10.1007/s00208-003-0443-8
[14] Bonk, M., Merenkov, S.: Quasisymmetric rigidity of square Sierpinski carpets. Ann. Math. 177(2), 591-643 (2013) · Zbl 1269.30027 · doi:10.4007/annals.2013.177.2.5
[15] Bonk, M., Meyer, D.: Expanding Thurston maps. In: AMS Mathematical Surveys and Monographs (to appear) (2010) · Zbl 1430.37001
[16] Cannon, J.W.: The combinatorial Riemann mapping theorem. Acta Math. 173, 155-234 (1994) · Zbl 0832.30012 · doi:10.1007/BF02398434
[17] David, G., Semmes, S.: Quantitative rectifiability and Lipschitz mappings. Trans. Am. Math. Soc. 337(2), 855-889 (1993) · Zbl 0792.49029 · doi:10.1090/S0002-9947-1993-1132876-8
[18] David, G., Toro, T.: Reifenberg flat metric spaces, snowballs, and embeddings. Math. Ann. 315(4), 641-710 (1999) · Zbl 0944.53004 · doi:10.1007/s002080050332
[19] Derrick, W.R.: Inequalities for \[p\] p-modules of curve families on Lipschitz surfaces. Math. Z. 119, 1-10 (1971) · Zbl 0193.01002 · doi:10.1007/BF01110937
[20] Derrick, W.R.: Extremal length and Rayleigh’s reciprocal theorem. Appl. Anal. 6(2):119-125 (1976/1977) · Zbl 0363.31003
[21] Folland, G.B.: Real analysis: modern techniques and their applications. Wiley, New York (1984) · Zbl 0549.28001
[22] Fu, J.H.G.: Bi-Lipschitz rough normal coordinates for surfaces with an \[L^1\] L1-curvature bound. Indiana Univ. Math. J. 47(2), 439-453 (1998) · Zbl 0942.53007 · doi:10.1512/iumj.1998.47.1527
[23] Gehring, F.W.: Extremal length definitions for the conformal capacity of rings in space. Mich. Math. J. 9(2), 137-150 (1962) · Zbl 0109.04904 · doi:10.1307/mmj/1028998672
[24] Gehring, F.W.: Lower dimensional absolute continuity properties of quasiconformal mappings. Math. Proc. Camb. Philos. Soc. 78, 81-93 (1975) · Zbl 0307.30026 · doi:10.1017/S0305004100051513
[25] Gehring, F.W.: Some metric properties of quasi-conformal mappings. In: Proceedings of the International Congress of Mathematicians (Vancouver B. C. 1974), vol. 2, pp. 203-206 (1975) · Zbl 0342.30012
[26] Haïssinsky, P., Pilgrim, K.: Coarse expanding conformal dynamics, Astérisque, No. 325 (2009) · Zbl 1206.37002
[27] Heinonen, J.: Lectures on analysis on metric spaces. Springer, New York (2001) · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[28] Heinonen, J., Keith, S.: Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds. Publ. Math. Inst. Hautes Études Sci. 113(1), 1-37 (2011) · Zbl 1238.30039 · doi:10.1007/s10240-011-0032-4
[29] Heinonen, J., Koskela, P.: Quasiconformal mappings in metric spaces with controlled geometry. Acta Math. 181, 1-61 (1998) · Zbl 0915.30018 · doi:10.1007/BF02392747
[30] Heinonen, J., Rickman, S.: Geometric branched covers between generalized manifolds. Duke Math. J. 113(3), 465-529 (2002) · Zbl 1017.30023 · doi:10.1215/S0012-7094-02-11333-7
[31] Heinonen, J., Semmes, S.: Thirty-three yes or no questions about mappings, measures, and metrics. Conform. Geom. Dyn. 1, 1-12 (1997) · Zbl 0885.00006 · doi:10.1090/S1088-4173-97-00012-X
[32] Heinonen, J., Sullivan, D.: On the locally branched Euclidean metric gauge. Duke Math. J. 114(1), 15-41 (2002) · Zbl 1019.58002 · doi:10.1215/S0012-7094-02-11412-4
[33] Heinonen, J., Wu, J.-M.: Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum. Geom. Topol. 14(2), 773-798 (2010) · Zbl 1198.30024 · doi:10.2140/gt.2010.14.773
[34] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev spaces on metric measure spaces: an approach based on upper gradients. In: New Mathematical Monographs, p. 27. Cambridge University Press, Cambridge (2015) · Zbl 1332.46001
[35] Hurewicz, W., Wallman, H.: Dimension theory, Princeton Mathematical Series, vol. 4. Princeton University Press, Princeton (1941) · Zbl 0060.39808
[36] Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Am. Math. Soc. 121(1), 113-123 (1994) · Zbl 0806.28004 · doi:10.1090/S0002-9939-1994-1189747-7
[37] Kleiner, B.: The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, International Congress of Mathematicians. vol. II, pp. 743-768, European Mathematical Society, Zürich (2006) · Zbl 1108.30014
[38] Laakso, T.: Plane with \[A_{\infty }\] A∞-weighted metric not bilipschitz embeddable to \[R^nRn\]. Bull. Lond. Math. Soc. 34, 667-676 (2002) · Zbl 1029.30014 · doi:10.1112/S0024609302001200
[39] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995) · Zbl 0819.28004
[40] Merenkov, S., Wildrick, K.: Quasisymmetric Koebe uniformization. Rev. Mat. Iberoam. 29(3), 859-909 (2013) · Zbl 1294.30043 · doi:10.4171/RMI/743
[41] Meyer, D.: Quasisymmetric embedding of self-similar surfaces and origami with rational maps. Ann. Acad. Sci. Fenn. Math. 27(2), 461-484 (2002) · Zbl 1017.30027
[42] Meyer, D.: Snowballs are quasiballs. Trans. Am. Math. Soc. 362(3), 1247-1300 (2010) · Zbl 1190.30018 · doi:10.1090/S0002-9947-09-04635-2
[43] Moore, R.L.: Foundations of point set theory. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence (1962) · Zbl 0192.28901
[44] Müller, S., Šverák, V.: On surfaces of finite total curvature. J. Differ. Geom. 42(2), 229-259 (1995) · Zbl 0853.53003
[45] Pankka, P., Wu, J.-M.: Geometry and quasisymmetric parametrization of Semmes spaces. Rev. Mat. Iberoam. 30(3), 893-970 (2014) · Zbl 1322.30021 · doi:10.4171/RMI/802
[46] Rado, T., Reichelderfer, P.V.: Continuous transformations in analysis. With an introduction to algebraic topology. Springer, Berlin (1955) · Zbl 0067.03506
[47] Schramm, O.: Transboundary extremal length (preprint version) (1993) · Zbl 0842.30006
[48] Semmes, S.: Chord-arc surfaces with small constant. II. Good parametrizations. Adv. Math. 88, 170-199 (1991) · Zbl 0733.42016 · doi:10.1016/0001-8708(91)90007-T
[49] Semmes, S.: Good metric spaces without good parametrizations. Rev. Mat. Iberoam. 12(1), 187-275 (1996) · Zbl 0854.57018 · doi:10.4171/RMI/198
[50] Semmes, S.: On the nonexistence of bi-Lipschitz parametrizations and geometric problems about \[A_{\infty }\] A∞-weights. Rev. Mat. Iberoam. 12(2), 337-410 (1996) · Zbl 0858.46017 · doi:10.4171/RMI/201
[51] Semmes, S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Sel. Math. (N.S.) 2, 155-295 (1996) · Zbl 0870.54031 · doi:10.1007/BF01587936
[52] Toro, T.: Surfaces with generalized second fundamental form in \[L^2\] L2 are Lipschitz manifolds. J. Differ. Geom. 39(1), 65-101 (1994) · Zbl 0806.53020
[53] Toro, T.: Geometric conditions and existence of bi-Lipschitz parametrizations. Duke Math. J. 77(1), 193-227 (1995) · Zbl 0847.42011 · doi:10.1215/S0012-7094-95-07708-4
[54] Tukia, P., Väisäl̈ä, J.: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1), 97-114 (1980) · Zbl 0403.54005
[55] Tyson, J.: Quasiconformality and quasisymmetry in metric measure spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 23, 525-548 (1998) · Zbl 0910.30022
[56] Tyson, J.: Analytic properties of locally quasisymmetric mappings from Euclidean domains. Indiana Univ. Math. J. 49(3), 995-1016 (2000) · Zbl 0966.30015 · doi:10.1512/iumj.2000.49.1695
[57] Väisälä, J.: Lectures on \[n\] n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229. Springer, Berlin, New York (1971) · Zbl 0221.30031
[58] Väisälä, J.: Quasisymmetric embeddings in Euclidean spaces. Trans. Am. Math. Soc. 264(1), 191-204 (1981) · Zbl 0456.30018 · doi:10.2307/1998419
[59] Wildrick, K.: Quasisymmetric parametrizations of two-dimensional metric planes. Proc. Lond. Math. Soc. (3) 97(3), 783-812 (2008) · Zbl 1160.30010 · doi:10.1112/plms/pdn023
[60] Wildrick, K.: Quasisymmetric structures on surfaces. Trans. Am. Math. Soc. 362(2), 623-659 (2010) · Zbl 1188.30065 · doi:10.1090/S0002-9947-09-04861-2
[61] Williams, M.: Geometric and analytic quasiconformality in metric measure spaces. Proc. Am. Math. Soc. 140(4), 1251-1266 (2012) · Zbl 1256.30055 · doi:10.1090/S0002-9939-2011-11035-9
[62] Ziemer, W.P.: Extremal length and conformal capacity. Trans. Am. Math. Soc. 126(3), 460-473 (1967) · Zbl 0177.34002 · doi:10.1090/S0002-9947-1967-0210891-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.