×

Probe of the anomalous neutral triple gauge couplings in photon-induced collision at future muon colliders. (English) Zbl 1523.81166

Summary: The anomalous \(ZZ\gamma\) and \(Z\gamma\gamma\) neutral triple gauge couplings occurred by dimension-eight operators are investigated through the process \(\mu^+\mu^-\to\mu^+\gamma^\ast\mu^-\to\mu^+ Z(\nu\bar{\nu})\mu^-\) at the muon collider with \(\sqrt{s} = 3\), 6, 10 and 14 TeV. The charged lepton pseudo-rapidity, the charged lepton transverse momentum and the transverse missing energy distributions are taken in consideration for the final state of the process in the analysis. The sensitivities of the anomalous couplings are obtained at 95% Confidence Level with integrated luminosity of \(\mathcal{L}_{\mathrm{int}} = 1\), 4, 10 and \(20\,\mathrm{ab}^{-1}\), respectively, according to center-of-mass energies of muon collider taking into account the effects of systematic uncertainties 0%, 3% and 5%. The best limits of anomalous \(C_{BB}/\Lambda^4\), \(C_{B W}/\Lambda^4\), \(C_{\widetilde{B}W}/\Lambda^4\) and \(C_{WW}/\Lambda^4\) couplings without systematic uncertainty at center-of-mass energy of 14 TeV and integrated luminosity of \(20\,\mathrm{ab}^{-1}\) are found to be \([-0.01026; 0.00636]\,\mathrm{TeV}^{-4}\), \([-0.02482; 0.03053]\,\mathrm{TeV}^{-4}\), \([-0.01830; 0.02510]\,\mathrm{TeV}^{-4}\), \([-0.06981; 0.07387]\,\mathrm{TeV}^{-4}\), respectively.

MSC:

81U35 Inelastic and multichannel quantum scattering
81V15 Weak interaction in quantum theory
78A35 Motion of charged particles
81S07 Uncertainty relations, also entropic
81T50 Anomalies in quantum field theory

References:

[1] Palmer, R. B., Rev. Accel. Sci. Tech., 7, 137 (2014)
[2] Delahaye, J-P.; Ankenbrandt, C.; Bogacz, A.; Brice, S.; Bross, A.; Denisov, D.; Eichten, E.; Huber, P.; Kaplan, D. M.; Kirk, H.; Lipton, R.; Neuffer, D.; Palmer, M. A.; Palmer, R.; Ryne, R.; Snopok, P., Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society (2013), FERMILAB-CONF-13-307-APC
[3] Bogomilov, B., Nature, 578, 53 (2020)
[4] Antonelli, M.; Boscolo, M.; Nardo, R. D.; Raimondi, P., Nucl. Instrum. Methods A, 807, 101 (2016)
[5] Han, T.; Ma, Y.; Xie, K., Phys. Rev. D, 103, Article L031301 pp. (2021)
[6] Han, T.; Ma, Y.; Xie, K., J. High Energy Phys., 02, Article 154 pp. (2022)
[7] Ruiz, R.; Costantini, A.; Maltoni, F.; Mattelaer, O., J. High Energy Phys., 06, Article 114 pp. (2022)
[8] Costantini, A.; Lillo, F. D.; Maltoni, F.; Mantani, L.; Mattelaer, O.; Ruiz, R.; Zhao, X., J. High Energy Phys., 09, Article 80 pp. (2020)
[9] Chiesa, M.; Maltoni, F.; Mantani, L.; Mele, B.; Piccinini, F.; Zhao, X., J. High Energy Phys., 09, Article 98 pp. (2020)
[10] Han, T.; Liu, D.; Low, I.; Wang, X., Phys. Rev. D, 103, Article 013002 pp. (2021)
[11] Chen, J.; Lu, C-T.; Wu, Y., J. High Energy Phys., 10, Article 99 pp. (2021)
[12] Chen, J.; Li, T.; Lu, C-T.; Wu, Y.; Yao, C-Y., Phys. Rev. D, 105, Article 053009 pp. (2022)
[13] Eichten, E.; Martin, A., Phys. Lett. B, 728, 125 (2014)
[14] Chakrabarty, N.; Han, T.; Liu, Z.; Mukhopadhyaya, B., Phys. Rev. D, 91, Article 015008 pp. (2015)
[15] Buttazzo, D.; Redigolo, D.; Sala, F.; Tesi, A., J. High Energy Phys., 11, Article 144 pp. (2018)
[16] Bandyopadhyay, P.; Costantini, A., Phys. Rev. D, 103, Article 015025 pp. (2021)
[17] Han, T.; Li, S.; Su, S.; Su, W.; Wu, Y., Phys. Rev. D, 104, Article 055029 pp. (2021)
[18] Liu, W.; Xie, K-P., J. High Energy Phys., 04, Article 15 pp. (2021)
[19] Han, T.; Liu, Z.; Wang, L.-T.; Wang, X., Phys. Rev. D, 103, Article 075004 pp. (2021)
[20] Ali, H. A., Rep. Prog. Phys., 85, Article 084201 pp. (2022)
[21] Chiesa, M.; Mele, B.; Piccinini, F., Multi Higgs production via photon fusion at future multi-TeV muon colliders (2021)
[22] Capdevilla, R.; Meloni, F.; Simoniello, R.; Zurita, J., J. High Energy Phys., 06, Article 133 pp. (2021)
[23] Bottaro, S.; Strumia, A.; Vignaroli, N., J. High Energy Phys., 06, Article 143 pp. (2021)
[24] Han, T.; Liu, Z.; Wang, L-T.; Wang, X., WIMP dark matter at high energy muon colliders - a white paper for snowmass 2021 (2022)
[25] Yin, W.; Yamaguchi, M., Phys. Rev. D, 106, Article 033007 pp. (2022)
[26] Capdevilla, R.; Curtin, D.; Kahn, Y.; Krnjaic, G., Phys. Rev. D, 103, Article 075028 pp. (2021)
[27] Buttazzo, D.; Paradisi, P., Phys. Rev. D, 104, Article 075021 pp. (2021)
[28] Dermisek, R.; Hermanek, K.; McGinnis, N., Phys. Rev. D, 104, Article L091301 pp. (2021)
[29] Capdevilla, R.; Curtin, D.; Kahn, Y.; Krnjaic, G., Phys. Rev. D, 105, Article 015028 pp. (2022)
[30] Huang, G-Y.; Queiroz, F. S.; Rodejohann, W., Phys. Rev. D, 103, Article 095005 pp. (2021)
[31] Asadi, P.; Capdevilla, R.; Cesarotti, C.; Homiller, S., J. High Energy Phys., 10, Article 182 pp. (2021)
[32] Spor, S.; Köksal, M., Investigation of anomalous triple gauge couplings in μγ collision at multi-TeV muon colliders (2022)
[33] Senol, A.; Spor, S.; Gurkanli, E.; Cetinkaya, V.; Denizli, H.; Köksal, M., Eur. Phys. J. Plus, 137, 1354 (2022)
[34] Yang, J-C.; Qing, Z-B.; Han, X-Y.; Guo, Y-C.; Li, T., J. High Energy Phys., 07, Article 53 pp. (2022)
[35] Yang, J-C.; Han, X-Y.; Qin, Z-B.; Li, T.; Guo, Y-C., J. High Energy Phys., 09, Article 074 pp. (2022)
[36] Spor, S.; Gurkanli, E.; Köksal, M., Nucl. Phys. B, 979, Article 115785 pp. (2022) · Zbl 1495.81096
[37] Degrande, C., J. High Energy Phys., 02, Article 101 pp. (2014)
[38] Gounaris, G. J.; Layssac, J.; Renard, F. M., Phys. Rev. D, 61, Article 073013 pp. (2000)
[39] Gounaris, G. J.; Layssac, J.; Renard, F. M., Phys. Rev. D, 62, Article 073013 pp. (2000)
[40] Moyotl, A.; Tavares-Velasco, G.; Toscano, J. J., Phys. Rev. D, 91, Article 093005 pp. (2015)
[41] Rahaman, R. (2020), Indian Institute of Science Education and Research, PhD Thesis
[42] Landau, L. D., Dokl. Akad. Nauk SSSR, 60, 207 (1948)
[43] Yang, C. N., Phys. Rev., 77, 242 (1950) · Zbl 0035.13602
[44] Senol, A.; Denizli, H.; Yilmaz, A.; Cakir, I. T.; Oyulmaz, K. Y.; Karadeniz, O.; Cakir, O., Nucl. Phys. B, 935, 365-376 (2018) · Zbl 1398.81304
[45] Senol, A.; Denizli, H.; Yilmaz, A.; Cakir, I. T.; Cakir, O., Acta Phys. Pol. B, 50, 1597 (2019)
[46] Ellis, J.; Ge, S. F.; He, H. J.; Xiao, R. Q., Chin. Phys. C, 44, Article 063106 pp. (2020)
[47] Yilmaz, A.; Senol, A.; Denizli, H.; Cakir, I. T.; Cakir, O., Eur. Phys. J. C, 80, 173 (2020)
[48] Senol, A.; Denizli, H.; Yilmaz, A.; Cakir, I. T.; Cakir, O., Phys. Lett. B, 802, Article 135255 pp. (2020)
[49] Ellis, J.; He, H. J.; Xiao, R. Q., Sci. China, Phys. Mech. Astron., 64, Article 221062 pp. (2021)
[50] Fu, Q.; Yang, J. C.; Yue, C. X.; Guo, Y. C., Nucl. Phys. B, 972, Article 115543 pp. (2021)
[51] Yilmaz, A., Nucl. Phys. B, 969, Article 115471 pp. (2021)
[52] Aaboud, M., J. High Energy Phys., 12, Article 010 pp. (2018)
[53] Aaboud, M., Phys. Rev. D, 97, Article 032005 pp. (2018)
[54] Sirunyan, A. M., Eur. Phys. J. C, 81, 200 (2021)
[55] Budnev, V. M.; Ginzburg, I. F.; Meledin, G. V.; Serbo, V. G., Phys. Rep., 15, 181 (1975)
[56] Köksal, M.; Billur, A. A.; Gutiérrez-Rodríguez, A.; Hernández-Ruíz, M. A., Int. J. Mod. Phys. A, 34, Article 1950076 pp. (2019)
[57] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H. S.; Stelzer, T.; Torrielli, P.; Zaro, M., J. High Energy Phys., 07, Article 079 pp. (2014) · Zbl 1402.81011
[58] Khoriauli, G., Nuovo Cimento B, 123, 1327 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.