×

Model fitting using partially ranked data. (English) Zbl 07739681

Summary: The importance of models for complete ranking data is well-established in the literature. Partial rankings, on the other hand, arise naturally when the set of objects to be ranked is relatively large. Partial rankings give rise to classes of compatible order preserving complete rankings. In this article, we define an exponential model for complete rankings and calibrate it on the basis of a random sample of partial rankings data. We appeal to the EM algorithm. The approach is illustrated in some simulations and in real data.

MSC:

62Gxx Nonparametric inference
Full Text: DOI

References:

[1] Ali, M. M., Probability Models on Horse-race Outcomes, Journal of Applied Statistics, 25, 2, 221-229 (1998) · Zbl 1060.62694
[2] Alvo, M., Bridging the Gap: A Likelihood Function Approach for the Analysis of Ranking Data., Communications in Statistics, Series A, 45, 5835-5847 (2016) · Zbl 1348.62156
[3] Alvo, M.; Cabilio, P., Rank Test of Trend when Data are Incomplete, Environmetrics, 5, 21-27 (1994)
[4] Alvo, M.; Cabilio, P., A General Rank Based Approach to the Analysis of Block Data, Communications in Statistics-Theory and Methods, 28, 197-215 (1999) · Zbl 0928.62056
[5] Alvo, M.; Yu, P., Statistical Methods for Ranking Data (2014), New York: Springer Verlag · Zbl 1341.62001
[6] Alvo, M.; Yu, P., A Parametric Approach to Nonparametric Statistics (2018), New York: Springer Verlag · Zbl 1416.62006
[7] Banerjee, A.; Dhillon, I. S.; Ghosh, J.; Sra, S., Clustering on the Unit Hypersphere Using Von Mises-Fisher Distributions, Journal of Machine Learning Research, 6, 1345-1382 (2005) · Zbl 1190.62116
[8] Dabic, M., and Hatzinger, R. (2009), ‘Zielgruppenadaequate Ablaeufe in Konfigurationssystemen-Eine empirische Studie im Automobilmarkt - Partial Rankings’, in Praeferenzanalyse mit R: Anwendungen aus Marketing, Behavioural Finance und Human Resource Management, eds. R. Hatzinger, R. Dittrich, & T. Salzberger, Wien: Facultas.
[9] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum Likelihood From Incomplete Data Via the EM Algorithm, Journal of the Royal Statistical Society Series B, 39, 1-38 (1977) · Zbl 0364.62022
[10] Deng, K.; Han, S.; Li, K. J.; Liu, J. S., Bayesian Aggregation of Order-based Rank Data, Journal of the American Statistical Association, 109, 507, 1023-1039 (2014) · Zbl 1368.62122
[11] Hartley, H. O., Maximum Likelihood Estimation From Incomplete Data, Biometrics, 14, 2, 174-194 (1958) · Zbl 0081.13904
[12] Li, H.; Xu, M.; Liu, J. S.; Fan, X., An Extended Mallows Model for Ranked Data Aggregation, Journal of the American Statistical Association, 115, 530, 730-746 (2020) · Zbl 1445.62040
[13] Mallows, C. L., Non-null Ranking Models. I, Biometrika, 44, 1-2, 114-130 (1957) · Zbl 0087.34001
[14] Mollica, C.; Tardella, L., Bayesian Plackett-Luce Mixture Models for Partially Ranked Data, Psychometrika, 82, 2, 442-458 (2017) · Zbl 1402.62045
[15] Neyman, J., Smooth Test for Goodness of Fit, Skandinavisk Aktuarietidskrift, 20, 149-199 (1937) · Zbl 0018.03403
[16] Sundberg, R., Maximum Likelihood Theory for Incomplete Data From An Exponential Family, Scandinavian Journal of Statistics, 1, 49-58 (1974) · Zbl 0284.62014
[17] Xu, H.; Alvo, M.; Yu, P., Angle-based Models for Ranking Data, Computational Statistics and Data Analysis, 121, 113-136 (2018) · Zbl 1469.62165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.