×

Nonautonomous motion study on accelerated and decelerated lump waves for a (3 + 1)-dimensional generalized shallow water wave equation with variable coefficients. (English) Zbl 1432.35171

Summary: Under investigation in this paper is a (3 + 1)-dimensional variable-coefficient generalized shallow water wave equation. The exact lump solutions of this equation are presented by virtue of its bilinear form and symbolic computation. Compared with the solutions of the previous cases, these solutions contain two inhomogeneous coefficients, which can show some interesting nonautonomous characteristics. Three types of dispersion coefficients are considered, including the periodic, exponential, and linear modulations. The corresponding nonautonomous lump waves have different characteristics of trajectories and velocities. The periodic fission and fusion interaction between a lump wave and a kink soliton is discussed graphically.

MSC:

35Q35 PDEs in connection with fluid mechanics
35C05 Solutions to PDEs in closed form
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

References:

[1] Jimbo, M.; Miwa, T., Solitons and infinite-dimensional lie algebras, Publications of the Research Institute for Mathematical Sciences, 19, 3, 943-1001 (1983) · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[2] Cao, B., Solutions of Jimbo-Miwa equation and Konopelchenko-Dubrovsky equations, Acta Applicandae Mathematicae, 112, 2, 181-203 (2010) · Zbl 1198.35206 · doi:10.1007/s10440-009-9559-5
[3] Xu, G., The soliton solutions, dromions of the Kadomtsev-Petviashvili and Jimbo-Miwa equations in (3 + 1)-dimensions, Chaos, Solitons & Fractals, 30, 1, 71-76 (2006) · Zbl 1141.35444 · doi:10.1016/j.chaos.2005.08.089
[4] Wazwaz, A.-M., Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Applied Mathematics and Computation, 203, 2, 592-597 (2008) · Zbl 1154.65366 · doi:10.1016/j.amc.2008.05.004
[5] Sun, H.-Q.; Chen, A.-H., Lump and lump-kink solutions of the (3 + 1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations, Applied Mathematics Letters, 68, 55-61 (2017) · Zbl 1362.35084 · doi:10.1016/j.aml.2016.12.008
[6] Yang, J. Y.; Ma, W. X., Abundant lump-type solutions of the Jimbo-Miwa equation in (3 + 1)-dimensions, Computers & Mathematics with Applications, 73, 2, 220-225 (2017) · Zbl 1368.35238 · doi:10.1016/j.camwa.2016.11.007
[7] Ma, W. X., Lump-type solutions to the (3 + 1)-dimensional Jimbo-Miwa equation, International Journal of Nonlinear Sciences and Numerical Simulation, 17, 7-8, 355-359 (2016) · Zbl 1401.35273 · doi:10.1515/ijnsns-2015-0050
[8] Or-Roshid, H.; Zulfikar, A. M., Lump solutions to a Jimbo-Miwa like equations, https://arxiv.org/abs/1611.04478
[9] Batwa, S.; Ma, W.-X., A study of lump-type and interaction solutions to a (3 + 1)-dimensional Jimbo-Miwa-like equation, Computers & Mathematics with Applications, 76, 7, 1576-1582 (2018) · Zbl 1434.35147 · doi:10.1016/j.camwa.2018.07.008
[10] Zhang, X.; Chen, Y., Rogue wave and a pair of resonance stripe solitons to a reduced (3 + 1)-dimensional Jimbo-Miwa equation, Communications in Nonlinear Science and Numerical Simulation, 52, 24-31 (2017) · Zbl 1510.35259 · doi:10.1016/j.cnsns.2017.03.021
[11] Zhang, R.; Bilige, S.; Fang, T.; Chaolu, T., New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo-Miwa-like equation, Computers & Mathematics with Applications, 78, 3, 754-764 (2019) · Zbl 1442.35406 · doi:10.1016/j.camwa.2019.02.035
[12] Wang, Y.-H.; Wang, H.; Dong, H.-H.; Zhang, H.-S.; Temuer, C., Interaction solutions for a reduced extended (3 + 1)-dimensional Jimbo-Miwa equation, Nonlinear Dynamics, 92, 2, 487-497 (2018) · doi:10.1007/s11071-018-4070-z
[13] Yue, Y.; Huang, L.; Chen, Y., Localized waves and interaction solutions to an extended (3 + 1)-dimensional Jimbo-Miwa equation, Applied Mathematics Letters, 89, 70-77 (2019) · Zbl 1410.35161 · doi:10.1016/j.aml.2018.09.020
[14] Satsuma, J.; Ablowitz, M. J., Two-dimensional lumps in nonlinear dispersive systems, Journal of Mathematical Physics, 20, 7, 1496-1503 (1979) · Zbl 0422.35014 · doi:10.1063/1.524208
[15] Kaup, D. J., The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction, Journal of Mathematical Physics, 22, 6, 1176-1181 (1981) · Zbl 0467.35070 · doi:10.1063/1.525042
[16] Gilson, C. R.; Nimmo, J. J. C., Lump solutions of the BKP equation, Physics Letters A, 147, 8-9, 472-476 (1990) · doi:10.1016/0375-9601(90)90609-r
[17] Imai, K., Dromion and lump solutions of the Ishimori-I equation, Progress of Theoretical Physics, 98, 5, 1013-1023 (1997) · doi:10.1143/ptp.98.1013
[18] Liu, J.-G.; He, Y., Abundant lump and lump-kink solutions for the new (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dynamics, 92, 3, 1103-1108 (2018) · doi:10.1007/s11071-018-4111-7
[19] Liu, J.-G., Lump-type solutions and interaction solutions for the (2 + 1)-dimensional generalized fifth-order KdV equation, Applied Mathematics Letters, 86, 36-41 (2018) · Zbl 1410.35175 · doi:10.1016/j.aml.2018.06.011
[20] Wang, H., Lump and interaction solutions to the (2 + 1)-dimensional Burgers equation, Applied Mathematics Letters, 85, 27-34 (2018) · Zbl 1524.35558 · doi:10.1016/j.aml.2018.05.010
[21] Wang, H.; Wang, Y.-H.; Ma, W.-X.; Temuer, C., Lump solutions of a new extended (2 + 1)-dimensional Boussinesq equation, Modern Physics Letters B, 32, 31, 1850376 (2018) · doi:10.1142/s0217984918503761
[22] Wu, X.-Y.; Tian, B.; Chai, H.-P.; Sun, Y., Rogue waves and lump solutions for a (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid mechanics, Modern Physics Letters B, 31, 22, 1750122 (2017) · doi:10.1142/s0217984917501226
[23] Sun, Y.; Tian, B.; Xie, X.-Y.; Chai, J.; Yin, H.-M., Rogue waves and lump solitons for a -dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics, Waves in Random and Complex Media, 28, 3, 544-552 (2017) · Zbl 07583374 · doi:10.1080/17455030.2017.1367866
[24] Wazwaz, A.-M., A two-mode modified KdV equation with multiple soliton solutions, Applied Mathematics Letters, 70, 1-6 (2017) · Zbl 1381.35157 · doi:10.1016/j.aml.2017.02.015
[25] Wang, L.; Liu, C.; Wu, X.; Wang, X.; Sun, W.-R., Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation, Nonlinear Dynamics, 94, 2, 977-989 (2018) · doi:10.1007/s11071-018-4404-x
[26] Wang, L.; Wu, X.; Zhang, H.-Y., Superregular breathers and state transitions in a resonant erbium-doped fiber system with higher-order effects, Physics Letters A, 382, 37, 2650-2654 (2018) · doi:10.1016/j.physleta.2018.07.036
[27] Xie, X.-Y.; Meng, G.-Q., Dark solitons for the (2 + 1)-dimensional Davey-Stewartson-like equations in the electrostatic wave packets, Nonlinear Dynamics, 93, 2, 779-783 (2018) · doi:10.1007/s11071-018-4226-x
[28] Xie, X.-Y.; Meng, G.-Q., Collisions between the dark solitons for a nonlinear system in the geophysical fluid, Chaos, Solitons & Fractals, 107, 143-145 (2018) · Zbl 1380.35156 · doi:10.1016/j.chaos.2017.12.014
[29] Xie, X.-Y.; Meng, G.-Q., Multi-dark soliton solutions for a coupled AB system in the geophysical flows, Applied Mathematics Letters, 92, 201-207 (2019) · Zbl 1412.35058 · doi:10.1016/j.aml.2019.01.028
[30] Xu, G. Q.; Deng, S. F., Painlevé analysis, integrability and exact solutions for a (2 + 1)-dimensional generalized Nizhnik-Novikov-Veselov equation, The European Physical Journal Plus, 131, 11, 385 (2016) · doi:10.1140/epjp/i2016-16385-x
[31] Xu, G.-Q.; Wazwaz, A.-M., Characteristics of integrability, bidirectional solitons and localized solutions for a (3 + 1)-dimensional generalized breaking soliton equation, Nonlinear Dynamics, 96, 3, 1989-2000 (2019) · Zbl 1437.37084 · doi:10.1007/s11071-019-04899-6
[32] Xu, G.-Q., Painlevé analysis, lump-kink solutions and localized excitation solutions for the (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Applied Mathematics Letters, 97, 81-87 (2019) · Zbl 1423.35078 · doi:10.1016/j.aml.2019.05.025
[33] Wang, X.; Wei, J.; Wang, L.; Zhang, J., Baseband modulation instability, rogue waves and state transitions in a deformed Fokas-Lenells equation, Nonlinear Dynamics, 97, 1, 343-353 (2019) · Zbl 1430.37077 · doi:10.1007/s11071-019-04972-0
[34] Wang, X.; Wang, L., Darboux transformation and nonautonomous solitons for a modified Kadomtsev-Petviashvili equation with variable coefficients, Computers & Mathematics with Applications, 75, 12, 4201-4213 (2018) · Zbl 1420.35330 · doi:10.1016/j.camwa.2018.03.022
[35] Wang, L.; Zhang, J. H.; Liu, C.; Li, M.; Qi, F. H., Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects, Physical Review E, 93, 6 (2016) · doi:10.1103/physreve.93.062217
[36] Cai, L.-Y.; Wang, X.; Wang, L.; Li, M.; Liu, Y.; Shi, Y.-Y., Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects, Nonlinear Dynamics, 90, 3, 2221-2230 (2017) · doi:10.1007/s11071-017-3797-2
[37] Huang, Q.-M.; Gao, Y.-T.; Jia, S.-L.; Wang, Y.-L.; Deng, G.-F., Bilinear Bäcklund transformation, soliton and periodic wave solutions for a (3 + 1)-dimensional variable-coefficient generalized shallow water wave equation, Nonlinear Dynamics, 87, 4, 2529-2540 (2017) · Zbl 1373.37163 · doi:10.1007/s11071-016-3209-z
[38] Liu, J.-G.; Zhu, W.-H., Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans, Computers & Mathematics with Applications, 78, 3, 848-856 (2019) · Zbl 1442.35388 · doi:10.1016/j.camwa.2019.03.008
[39] Ma, W.-X.; Zhou, Y., Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, Journal of Differential Equations, 264, 4, 2633-2659 (2018) · Zbl 1387.35532 · doi:10.1016/j.jde.2017.10.033
[40] Ma, W.-X., Lump solutions to the Kadomtsev-Petviashvili equation, Physics Letters A, 379, 36, 1975-1978 (2015) · Zbl 1364.35337 · doi:10.1016/j.physleta.2015.06.061
[41] Hirota, R., Exact solution of the korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27, 18, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/physrevlett.27.1192
[42] Deng, Z.-H.; Chang, X.; Tan, J.-N.; Tang, B.; Deng, K., Characteristics of the lumps and stripe solitons with interaction phenomena in the (2 + 1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, International Journal of Theoretical Physics, 58, 1, 92-102 (2018) · Zbl 1415.37094 · doi:10.1007/s10773-018-3912-2
[43] Hirota, R., The Direct Method in Soliton Theory (2004), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 1099.35111
[44] Jia, X.-Y.; Tian, B.; Du, Z.; Sun, Y.; Liu, L., Lump and rogue waves for the variable-coefficient Kadomtsev-Petviashvili equation in a fluid, Modern Physics Letters B, 32, 10, 1850086 (2018) · doi:10.1142/s0217984918500860
[45] Kaur, L.; Wazwaz, A. M., Dynamical analysis of lump solutions for (3 + 1) dimensional generalized KP-Boussinesq equation and its dimensionally reduced equations, Physica Scripta, 93, 7 (2018) · doi:10.1088/1402-4896/aac8b8
[46] Yin, Y.; Tian, B.; Chai, H. P.; Yuan, Y. Q.; Du, Z., Lumps and rouge waves for a (3 + 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics, Pramana, 91, 3, 43 (2018) · doi:10.1007/s12043-018-1609-y
[47] Ma, W.-X., Abundant lumps and their interaction solutions of (3 + 1)-dimensional linear PDEs, Journal of Geometry and Physics, 133, 10-16 (2018) · Zbl 1401.35261 · doi:10.1016/j.geomphys.2018.07.003
[48] Chen, S.-T.; Ma, W.-X., Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation, Frontiers of Mathematics in China, 13, 3, 525-534 (2018) · Zbl 1403.35259 · doi:10.1007/s11464-018-0694-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.