×

Bi-Hölder extensions of quasi-isometries on complex domains. (English) Zbl 1487.32062

Summary: In this paper, we prove some results on bi-Hölder extensions not only for biholomorphisms but also for more general Kobayashi metric quasi-isometries between the domains. Furthermore, we establish the Gehring-Hayman type theorems on certain complex domains which play an important role through the paper. Then by applying the above results, we show the bi-Hölder equivalence between the Euclidean boundary and the Gromov boundary of bounded convex domains which are Gromov hyperbolic with respect to their Kobayashi metrics.

MSC:

32F45 Invariant metrics and pseudodistances in several complex variables
32F18 Finite-type conditions for the boundary of a domain
32T15 Strongly pseudoconvex domains
Full Text: DOI

References:

[1] Balogh, ZM; Bonk, M., Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv., 75, 3, 504-533 (2000) · Zbl 0986.32012 · doi:10.1007/s000140050138
[2] Balogh, Z.M., Buckley, S.M.: Geometric characterizations of Gromov hyperbolicity. Invent. Math. 153(2):261-301 · Zbl 1059.30038
[3] Barth, TJ, Convex domains and Kobayashi hyperbolicity, Proc. Am. Math. Soc., 79, 4, 556-558 (1980) · Zbl 0438.32013 · doi:10.1090/S0002-9939-1980-0572300-3
[4] Bharali, G.; Zimmer, A., Goldilocks domains, a weak notion of visibility, and applications, Adv. Math., 310, 377-425 (2016) · Zbl 1366.32005 · doi:10.1016/j.aim.2017.02.005
[5] Bonk, M.; Schramm, O., Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., 10, 2, 266-306 (1999) · Zbl 0972.53021 · doi:10.1007/s000390050009
[6] Bonk, M., Heinonen, J., Koskela, P.: Uniformizing Gromov hyperbolic spaces. Astérisque 270(270) (2001) · Zbl 0970.30010
[7] Bracci, F., Gaussier, H., Zimmer, A.: Homeomorphic extension of quasi-isometries for convex domains in \(\mathbb{C}^d\) and iteration theory. Math. Ann. (2020) · Zbl 1460.32012
[8] Bridson, M.; Haefliger, A., Metric spaces of non-positive curvature, Fundam. Princ. Math. Sci. (2009) · Zbl 0988.53001 · doi:10.1007/978-3-662-12494-9
[9] Deng, FS; Guan, QA; Zhang, LY, Properties of squeezing functions and global transformations of bounded domains, Trans. Am. Math. Soc., 368, 4, 2679-2696 (2016) · Zbl 1338.32015 · doi:10.1090/tran/6403
[10] Diederich, K.; Fornæss, JE; Wold, EF, Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type, J. Geom. Anal., 24, 4, 2124-2134 (2014) · Zbl 1312.32006 · doi:10.1007/s12220-013-9410-0
[11] Forstneric, F.: Proper holomorphic mappings: a survey. Several Complex Var. (Stockholm, 1987/1988) 38:297-363 (1993) · Zbl 0778.32008
[12] Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. I: Convergent rescalings and intrinsic quasi-isometric structure. Applications of affine geometry to geometric function theory in several complex variables. I: Convergent rescalings and intrinsic quasi-isometric structure (1991) · Zbl 0747.32003
[13] Gehring, FW; Hayman, WK, An inequality in the theory of conformal mapping, J. Math. Pure. Appl., 41, 9, 353-361 (1962) · Zbl 0105.28002
[14] Gehring, FW; Osgood, BG, Uniform domains and the quasi-hyperbolic metric, J. Anal. Math., 36, 1, 50-74 (1979) · Zbl 0449.30012 · doi:10.1007/BF02798768
[15] Graham, I., Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in \(\mathbb{C}^n\) with smooth boundary, Trans. Am. Math. Soc., 207, 1, 219-240 (1975) · Zbl 0305.32011
[16] Koskela, P.; Lammi, P.; Manojlović, V., Gromov hyperbolicity and quasihyperbolic geodesics, Ann. Sci. L École Normale Supér., 47, 5, 975-990 (2014) · Zbl 1317.30085 · doi:10.24033/asens.2231
[17] Krantz, SG, Optimal Lipschitz and \({L}_p\) regularity for the equation \(\bar{\partial } u = f\) on strongly pseudo-convex domains, Math. Ann., 219, 3, 233-260 (1976) · Zbl 0303.35059 · doi:10.1007/BF01354286
[18] Liu, KF; Sun, XF; Yau, ST, Canonical metrics on the moduli space of Riemann surfaces I, J. Differ. Geom., 10, 2, 571-571 (2004) · Zbl 1078.30038
[19] Liu, KF; Sun, XF; Yau, ST, Canonical metrics on the moduli space of Riemann surfaces II, J. Differ. Geom., 69, 1, 162-216 (2005) · Zbl 1086.32011 · doi:10.4310/jdg/1121540343
[20] Mercer, P.R.: Complex geodesics and iterates of holomorphic maps on convex domains in \(\mathbb{C}^n\). Trans. Am. Math. Soc. 338(1):201-211 (1993) · Zbl 0790.32026
[21] Mercer, PR, A general Hopf lemma and proper holomorphic mappings between convex domains in n, Proc. Am. Math. Soc., 119, 2, 573-573 (1993) · Zbl 0788.32021
[22] Nikolov, N.; Andreev, L., Estimates of the Kobayashi and quasi-hyperbolic distances, Ann. Mat., 196, 1, 1-8 (2015) · Zbl 1366.32006
[23] Royden, H.L.: Remarks on the Kobayashi metric. In: Several Complex Variables II Maryland 1970, pp. 125-137. Springer, Berlin (1971) · Zbl 0218.32012
[24] Väisälä, J.: The free quasiworld. freely quasiconformal and related maps in Banach spaces. Quasiconformal geometry and dynamics Banach center publications, p. 48 (1999) · Zbl 0934.30018
[25] Väisälä, J., Gromov hyperbolic spaces, Expo. Math., 3, 187-231 (2005) · Zbl 1087.53039 · doi:10.1016/j.exmath.2005.01.010
[26] Venturini, S., Pseudodistances and pseudometrics on real and complex manifolds, Ann. Mat., 154, 1, 385-402 (1989) · Zbl 0702.32022 · doi:10.1007/BF01790358
[27] Yeung, SK, Geometry of domains with the uniform squeezing property, Adv. Math., 221, 2, 547-569 (2009) · Zbl 1165.32004 · doi:10.1016/j.aim.2009.01.002
[28] Zimmer, A., Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type, Math. Ann., 365, 3, 1-74 (2016) · Zbl 1379.53053
[29] Zimmer, A.: Subelliptic estimates from gromov hyperbolicity (2019). arXiv:1904.10861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.