×

Canonical models on strongly convex domains via the squeezing function. (English) Zbl 1464.32025

Summary: We prove that if a holomorphic self-map \(f:\Omega\rightarrow\Omega\) of a bounded strongly convex domain \(\Omega\subset\mathbb{C}^q\) with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball \(\mathbb{B}^k\). We also obtain the dual result for a holomorphic self-map \(f:\Omega\rightarrow\Omega\) with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of \(f\) via the squeezing function.

MSC:

32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables
32A40 Boundary behavior of holomorphic functions of several complex variables
32T15 Strongly pseudoconvex domains
37F99 Dynamical systems over complex numbers

References:

[1] Abate, M., Horospheres and iterates of holomorphic maps, Math. Z., 198, 225-238 (1988) · Zbl 0628.32035 · doi:10.1007/BF01163293
[2] Abate, M., Iteration Theory of Holomorphic maps on Taut Manifolds (1989), Cosenza: Mediterranean Press, Cosenza · Zbl 0747.32002
[3] Abate, M.; Bracci, F., Common boundary regular fixed points for holomorphic semigroups in strongly convex domains, Contemp. Math., 667, 1-14 (2016) · Zbl 1353.32010 · doi:10.1090/conm/667/13527
[4] Abate, M.; Raissy, J., Backward iteration in strongly convex domains, Adv. Math., 228, 5, 2837-2854 (2011) · Zbl 1250.32019 · doi:10.1016/j.aim.2011.06.044
[5] Andersén, E.; Lempert, L., On the group of holomorphic automorphisms of \(\mathbb{C}^n\), Invent. Math., 110, 1, 371-388 (1992) · Zbl 0770.32015 · doi:10.1007/BF01231337
[6] Arosio, L., The stable subset of a univalent self-map, Math. Z., 281, 3-4, 1089-1110 (2015) · Zbl 1351.32025 · doi:10.1007/s00209-015-1521-9
[7] Arosio, L., Canonical models for the forward and backward iteration of holomorphic maps, J. Geom. Anal., 27, 2, 1178-1210 (2017) · Zbl 1382.32012 · doi:10.1007/s12220-016-9714-y
[8] Arosio, L.; Bracci, F., Canonical models for holomorphic iteration, Trans. Am. Math. Soc., 368, 5, 3305-3339 (2016) · Zbl 1398.32019 · doi:10.1090/tran/6593
[9] Arosio, L.; Guerini, L., Backward orbits in the unit ball, Proc. Am. Math. Soc., 147, 9, 3947-3954 (2019) · Zbl 1429.32024 · doi:10.1090/proc/14544
[10] Balogh, ZM; Bonk, M., Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Commentarii Mathematici Helvetici, 75, 504-533 (2000) · Zbl 0986.32012 · doi:10.1007/s000140050138
[11] Bracci, F.; Gentili, G.; Poggi-Corradini, P., Valiron’s construction in higher dimension, Rev. Mat. Iberoam., 26, 1, 57-76 (2010) · Zbl 1198.32006 · doi:10.4171/RMI/593
[12] Chang, CH; Hu, MC; Lee, HP, Extremal analytic discs with prescribed boundary data, Trans. Am. Math. Soc., 310, 1, 355-369 (1988) · Zbl 0708.32006 · doi:10.1090/S0002-9947-1988-0930081-7
[13] Coornaert, M., Delzant, T., Papadopoulos, A.: Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics (in French) (1990) · Zbl 0727.20018
[14] Deng, F.; Guan, Q.; Zhang, L., Properties of squeezing functions and global transformations of bounded domains, Trans. Am. Math. Soc., 386, 4, 2679-2696 (2016) · Zbl 1338.32015 · doi:10.1090/tran/6403
[15] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26, 1, 1-65 (1974) · Zbl 0289.32012 · doi:10.1007/BF01406845
[16] Forstneric, F.; Rosay, JP, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann., 279, 2, 239-252 (1987) · Zbl 0644.32013 · doi:10.1007/BF01461721
[17] Gaussier, H.; Seshadri, H., Totally geodesic discs in strongly convex domains, Math. Z., 274, 1-2, 186-197 (2013) · Zbl 1272.32013
[18] Huang, X., A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications, Illinois J. Math., 38, 2, 283-302 (1994) · Zbl 0804.32016 · doi:10.1215/ijm/1255986801
[19] Krantz, SG; Gallagher, I., Harmonic and complex analysis in several variables, Springer Monographs in Mathematics (2017), New York: Springer, New York · Zbl 1414.32001
[20] Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math., 109, 4, 427-474 (1981) · Zbl 0492.32025
[21] Ostapyuk, O., Backward iteration in the unit ball, Illinois J. Math., 55, 4, 1569-1602 (2011) · Zbl 1269.30032 · doi:10.1215/ijm/1373636697
[22] Poggi-Corradini, P., Canonical conjugations at fixed points other than the Denjoy-Wolff point, Ann. Acad. Sci. Fenn. Math., 25, 2, 487-499 (2000) · Zbl 0958.30012
[23] Valiron, G., Sur l’itération des fonctions holomorphes dans un demi-plan, Bull. Sci. Math., 47, 105-128 (1931) · Zbl 0001.28101
[24] Wong, B., Characterization of the unit ball in \(\mathbb{C}^n\) by its automorphism group, Invent. Math., 41, 3, 253-257 (1977) · Zbl 0385.32016 · doi:10.1007/BF01403050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.