×

Models of random knots. (English) Zbl 1404.57007

The first half of the article contains a review of various models of random knots, such as self avoiding closed walks on the cubic lattice \(\mathbb{Z}^3\), random polygons in \(\mathbb{R}^3\), smoothed Brownian motion in \(\mathbb{R}^3\), random grid diagrams in \(\mathbb{R}^2\), random planar diagrams in \(\mathbb{R}^2\), random braids and random planar Lissajous curves. For each model the main known results on the knot distribution, the nature of these models and the properties of the knots they produce are discussed. This part of the paper can serve as an excellent source of the current literature on these models. Of particular interest to the author is a Petaluma model where a knot diagram has only a single crossing and several projected strands smoothly traverse this crossing at different heights. C. Adams et al. [J. Knot Theory Ramifications 24, No. 3, Article ID 1550011 (2015; Zbl 1322.57004) and ibid. 24, No. 2, Article ID 1550012, 16 p. (2015; Zbl 1316.57011)] have shown that every knot or link has a planar projection with a single crossing – the so called multi-crossing or über-crossing. Moreover, every knot has a petal projection, where the loops that emanate from the multi-crossing point have disjoint interiors. Consequently, petal projections are represented by a rose-shaped curve with an odd number of petals. In order to reconstruct the original knot one needs only the relative ordering of the heights of the strands above the multi-crossing point and this information can be encoded in a single permutation \(\sigma\). Random knots are constructed by picking a permutation \(\sigma\in S_{2n+1}\) with uniform probability. The author reports on rigorous results and numerical experiments concerning the asymptotic distribution of finite type invariants of random knots in Petaluma model, see also the following [C. Even-Zohar et al., Discrete Comput. Geom. 56, No. 2, 274–314 (2016; Zbl 1354.57012)]. The paper concludes with questions about the universality and classification of the various random knot models.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
60B05 Probability measures on topological spaces

References:

[1] Adams, C.: The Knot Book. American Mathematical Society, Providence, RI (1994) · Zbl 0840.57001
[2] Adams, C., Kehne, G.: Bipyramid decompositions of multi-crossing link complements (2016). arXiv:1610.03830 · Zbl 1121.55013
[3] Adams, C.: Bipyramids and bounds on volumes of hyperbolic links. Topol. Appl. 222, 100-114 (2017) · Zbl 1362.57025
[4] Adams, C; Crawford, T; DeMeo, B; Landry, M; Lin, AT; Montee, MK; Park, S; Venkatesh, S; Yhee, F, Knot projections with a single multi-crossing, J. Knot Theory Ramif., 24, 1550011, (2015) · Zbl 1322.57004 · doi:10.1142/S021821651550011X
[5] Adams, C; Capovilla-Searle, O; Freeman, J; Irvine, D; Petti, S; Vitek, D; Weber, A; Zhang, S, Bounds on übercrossing and petal numbers for knots, J. Knot Theory Ramif., 24, 1550012, (2015) · Zbl 1316.57011 · doi:10.1142/S0218216515500121
[6] Adler, R.J., Bobrowski, O., Borman, M.S., Subag, E., Weinberger, S., et al.: Persistent homology for random fields and complexes. In: Borrowing strength: theory powering applications-a Festschrift for Lawrence D. Brown, pp. 124-143. Institute of Mathematical Statistics (2010)
[7] Agol, I; Hass, J; Thurston, W, The computational complexity of knot genus and spanning area, Trans. Am. Math. Soc., 358, 3821-3850, (2006) · Zbl 1098.57003 · doi:10.1090/S0002-9947-05-03919-X
[8] Aharonov, D; Jones, V; Landau, Z, A polynomial quantum algorithm for approximating the Jones polynomial, Algorithmica, 55, 395-421, (2009) · Zbl 1191.68313 · doi:10.1007/s00453-008-9168-0
[9] Alexander, J.W., Briggs, G.B.: On types of knotted curves. Ann. Math. 28, 562-586 (1926) · JFM 53.0549.02
[10] Alexander, JW, Topological invariants of knots and links, Trans. Am. Math. Soc., 30, 275-306, (1928) · JFM 54.0603.03 · doi:10.1090/S0002-9947-1928-1501429-1
[11] Alon, N., Spencer, J.H.: The probabilistic method. Wiley, Hoboken, NJ (2000) · Zbl 0996.05001
[12] Alvarado, S; Calvo, JA; Millett, KC, The generation of random equilateral polygons, J. Stat. Phys., 143, 102-138, (2011) · Zbl 1222.82069 · doi:10.1007/s10955-011-0164-4
[13] Arsuaga, J; Diao, Y, DNA knotting in spooling like conformations in bacteriophages, Comput. Math. Methods Med., 9, 303-316, (2008) · Zbl 1160.92017 · doi:10.1080/17486700802167801
[14] Arsuaga, J; Vázquez, M; Trigueros, S; Roca, J; etal., Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids, Proc. Natl. Acad. Sci., 99, 5373-5377, (2002) · doi:10.1073/pnas.032095099
[15] Arsuaga, J; Vazquez, M; McGuirk, P; Trigueros, S; Roca, J; etal., DNA knots reveal a chiral organization of DNA in phage capsids, Proc. Natl. Acad. Sci. USA, 102, 9165-9169, (2005) · doi:10.1073/pnas.0409323102
[16] Arsuaga, J; Blackstone, T; Diao, Y; Karadayi, E; Saito, M, Linking of uniform random polygons in confined spaces, J. Phys. A: Math. Theor., 40, 1925, (2007) · Zbl 1123.57005 · doi:10.1088/1751-8113/40/9/001
[17] Arsuaga, J; Blackstone, T; Diao, Y; Hinson, K; Karadayi, E; Saito, M, Sampling large random knots in a confined space, J. Phys. A: Math. Theor., 40, 11697, (2007) · Zbl 1133.57004 · doi:10.1088/1751-8113/40/39/002
[18] Ashton, T., Cantarella, J., Chapman, H.: plCurve (2016). http://www.jasoncantarella.com/wordpress/software/plcurve. Accessed 14 Dec 2016
[19] Atapour, M; Soteros, CE; Ernst, C; Whittington, SG, The linking probability for 2-component links which span a lattice tube, J. Knot Theory Ramif., 19, 27-54, (2010) · Zbl 1185.82008 · doi:10.1142/S0218216510007760
[20] Atapour, M; Soteros, CE; Sumners, DW; Whittington, SG, Counting closed 2-manifolds in tubes in hypercubic lattices, J. Phys. A: Math. Theor., 48, 165002, (2015) · Zbl 1317.57014 · doi:10.1088/1751-8113/48/16/165002
[21] Bar-Natan, D., Morrison, S., et al. The knot atlas (2016a). http://katlas.org/. Accessed 14 Dec 2016
[22] Bar-Natan, D., Morrison, S., et al.: The Mathematica package KnotTheory (2016b). http://katlas.org/wiki/setup. Accessed 14 Dec 2016
[23] Bar-Natan, D.: Polynomial invariants are polynomial. Math. Res. Lett. 2(3), 239-246 (1995a) · Zbl 0851.57001
[24] Bar-Natan, D, On the Vassiliev knot invariants, Topology, 34, 423-472, (1995) · Zbl 0898.57001 · doi:10.1016/0040-9383(95)93237-2
[25] Bates, A.D., Maxwell, A.: DNA topology. Oxford University Press, Oxford (2005) · Zbl 1258.60033
[26] Berger, MA, Introduction to magnetic helicity, Plasma Phys. Control. Fusion, 41, b167, (1999) · doi:10.1088/0741-3335/41/12B/312
[27] Bender, EA; Gao, ZC; Richmond, LB, Submaps of maps. I. general 0-1 laws, J. Comb. Theory Ser. B, 55, 104-117, (1992) · Zbl 0810.05034 · doi:10.1016/0095-8956(92)90034-U
[28] Berry, M, Knotted zeros in the quantum states of hydrogen, Found. Phys., 31, 659-667, (2001) · doi:10.1023/A:1017521126923
[29] Birman, JS; Lin, XS, Knot polynomials and vassiliev’s invariants, Invent. Math., 111, 225-270, (1993) · Zbl 0812.57011 · doi:10.1007/BF01231287
[30] Bogle, MGV; Hearst, JE; Jones, VFR; Stoilov, L, Lissajous knots, J. Knot Theory Ramif., 3, 121-140, (1994) · Zbl 0834.57005 · doi:10.1142/S0218216594000095
[31] Boocher, A; Daigle, J; Hoste, J; Zheng, W, Sampling Lissajous and Fourier knots, Exp. Math., 18, 481-497, (2009) · Zbl 1180.57007 · doi:10.1080/10586458.2009.10129057
[32] Brinkmann, G; McKay, BD; etal., Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem, 58, 323-357, (2007) · Zbl 1164.68025
[33] Brooks, R; Makover, E; etal., Random construction of Riemann surfaces, J. Diff. Geom., 68, 121-157, (2004) · Zbl 1095.30037 · doi:10.4310/jdg/1102536712
[34] Brunn, H.: Über verknotete kurven. Mathematiker Kongresses Zurich, pp. 256-259 (1897) · Zbl 1316.57011
[35] Buck, D.: DNA topology. Applications of knot theory (Proc. Sympos. Appl. Math., 66, Amer. Math. Soc., 2009), pp. 47-79 (2009) · Zbl 1180.92024
[36] Buck, GR, Random knots and energy: elementary considerations, J. Knot Theory Ramif., 3, 355-363, (1994) · Zbl 0841.57009 · doi:10.1142/S0218216594000253
[37] Cantarella, J; Shonkwiler, C, The symplectic geometry of closed equilateral random walks in 3-space, Ann. Appl. Prob., 26, 549-596, (2016) · Zbl 1408.53109 · doi:10.1214/15-AAP1100
[38] Cantarella, J; Chapman, H; Mastin, M, Knot probabilities in random diagrams, J. Phys. A Math. Theor., 49, 405001, (2016) · Zbl 1353.82083 · doi:10.1088/1751-8113/49/40/405001
[39] Cantarella, J; Duplantier, B; Shonkwiler, C; Uehara, E, A fast direct sampling algorithm for equilateral closed polygons, J. Phys. A Math. Theor., 49, 275202, (2016) · Zbl 1342.82063 · doi:10.1088/1751-8113/49/27/275202
[40] Cha, J.C., Livingston, C.: KnotInfo: Table of knot invariants (2016). http://www.indiana.edu/ knotinfo. Accessed 14 Dec 2016
[41] Chang, H.-C., Erickson, J.: Electrical reduction, homotopy moves, and defect (2015). arXiv: 1510.00571 · Zbl 1322.57004
[42] Chapman, K.: An ergodic algorithm for generating knots with a prescribed injectivity radius (2016a). arXiv:1603.02770 · Zbl 1429.57004
[43] Chapman, H.: Asymptotic laws for knot diagrams. In: Proceedings of the 28-th International Conference on Formal Power Series and Algebraic Combinatorics, pp. 323-334 (2016b). Vancouver · Zbl 1189.82052
[44] Chapman, H.: Asymptotic laws for random knot diagrams (2016c). arXiv:1608.02638 · Zbl 1377.57023
[45] Cheston, MA; McGregor, K; Soteros, CE; Szafron, ML, New evidence on the asymptotics of knotted lattice polygons via local strand-passage models, J. Stat. Mech: Theory Exp., 2014, p02014, (2014) · Zbl 1456.82946 · doi:10.1088/1742-5468/2014/02/P02014
[46] Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev knot invariants. Cambridge University Press, Cambridge (2012) · Zbl 1245.57003
[47] Chmutov, S; Duzhin, S, The Kontsevich integral, Acta Applicandae Mathematica, 66, 155-190, (2001) · Zbl 0980.57006 · doi:10.1023/A:1010773818312
[48] des Cloizeaux, J; Mehta, ML, Topological constraints on polymer rings and critical indices, J. de Physique, 40, 665-670, (1979) · doi:10.1051/jphys:01979004007066500
[49] Cohen, G.: Jones [InlineMediaObject not available: see fulltext.] (hebrew) (2007). Advisor: Ram Band
[50] Cohen, M; Krishnan, SR, Random knots using Chebyshev billiard table diagrams, Topol. Appl., 194, 4-21, (2015) · Zbl 1328.57005 · doi:10.1016/j.topol.2015.07.018
[51] Cohen, M., Even-Zohar, C., Krishnan, S.R.: Crossing numbers of random two-bridge knots (2016). arXiv:1606.00277 · Zbl 1398.57009
[52] Comstock, E.H.: The real singularities of harmonic curves of three frequencies. Trans. Wisconsin Acad. Sci. 11:452-464 (1897) · JFM 28.0628.03
[53] Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties. In: Leech, J. (ed) Computational problems in abstract algebra, pp. 329-358. Pergamon, Oxford (1970) · Zbl 0202.54703
[54] Coward, A; Lackenby, M, An upper bound on Reidemeister moves, Am. J. Math., 136, 1023-1066, (2014) · Zbl 1301.57004 · doi:10.1353/ajm.2014.0027
[55] Crippen, GM, Topology of globular proteins, J. Theor. Biol., 45, 327-338, (1974) · doi:10.1016/0022-5193(74)90118-0
[56] Cromwel, PR, Embedding knots and links in an open book I: basic properties, Topol. Appl., 64, 37-58, (1995) · Zbl 0845.57004 · doi:10.1016/0166-8641(94)00087-J
[57] Cromwell, P.R.: Arc presentations of knots and links, vol. 42, pp. 57-64. Banach Center Publications, Warsaw (1998) · Zbl 0904.57004
[58] Culler, M., Dunfield, N.M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of 3-manifolds (2016). http://www.math.uic.edu/t3m/SnapPy. Accessed 14 Dec 2016 · Zbl 0100.19402
[59] Dasbach, OT; Le, TD; Lin, XS, Quantum morphing and the Jones polynomial, Commun. Math. Phys., 224, 427-442, (2001) · Zbl 0991.57012 · doi:10.1007/s002200100543
[60] Deguchi, T; Tsurusaki, K, A statistical study of random knotting using the Vassiliev invariants, J. Knot Theory Ramif., 3, 321-353, (1994) · Zbl 0841.57010 · doi:10.1142/S0218216594000241
[61] Deguchi, T; Tsurusaki, K, Universality of random knotting, Phys. Rev. E, 55, 6245, (1997) · Zbl 0870.57011 · doi:10.1103/PhysRevE.55.6245
[62] Delbruck, M.: Knotting problems in biology. Plant Genome Data and Information Center collection on computational molecular biology and genetics (1961) · Zbl 1213.37072
[63] Dennis, MR; King, RP; Jack, B; O’Holleran, K; Padgett, MJ, Isolated optical vortex knots, Nat. Phys., 6, 118-121, (2010) · doi:10.1038/nphys1504
[64] Diao, Y., Ernst, C., Ziegler, U.: Generating large random knot projections. In: Calvo, J.A., Millett, K.C., Rawdon, E.J., Stasiak, A. (eds.) Physical And Numerical Models In Knot Theory: Including Applications to the Life Sciences, pp. 473-494. World Scientific, Singapore (2005) · Zbl 1106.57005
[65] Diao, Y, The knotting of equilateral polygons in \(\mathbb{R}^3\), J. Knot Theory Ramif., 4, 189-196, (1995) · Zbl 0846.57004 · doi:10.1142/S0218216595000090
[66] Diao, Y; Pippenger, N; Sumners, DW, On random knots, J. Knot Theory Ramif., 3, 419-429, (1994) · Zbl 0846.57003 · doi:10.1142/S0218216594000307
[67] Diao, Y; Nardo, JC; Sun, Y, Global knotting in equilateral random polygons, J. Knot Theory Ramif., 10, 597-607, (2001) · Zbl 1001.57026 · doi:10.1142/S0218216501001025
[68] Diao, Y; Ernst, C; Hinson, K; Ziegler, U, The mean squared writhe of alternating random knot diagrams, J. Phys. A: Math. Theor., 43, 495202, (2010) · Zbl 1210.57005 · doi:10.1088/1751-8113/43/49/495202
[69] Dunfield, N., Hirani, A., Obeidin, M., Ehrenberg, A., Bhattacharyya, S., Lei, D., et al.: Random knots: a preliminary report, 2014. Slides for talk (2014). http://dunfield.info/preprints. Accessed 14 Dec 2016 · Zbl 1346.92082
[70] Dunfield, NM; Thurston, WP, Finite covers of random 3-manifolds, Inventiones Mathematicae, 166, 457-521, (2006) · Zbl 1111.57013 · doi:10.1007/s00222-006-0001-6
[71] Dunfield, NM; Wong, H, Quantum invariants of random 3-manifolds, Algebr. Geometr. Topol., 11, 2191-2205, (2011) · Zbl 1236.57017 · doi:10.2140/agt.2011.11.2191
[72] Ernst, C; Sumners, DW, The growth of the number of prime knots, Math. Proc. Cambridge Philos. Soc., 102, 303-315, (1987) · Zbl 0632.57007 · doi:10.1017/S0305004100067323
[73] Even-Zohar, C., Hass, J., Linial, N., Nowik, T.: The distribution of knots in the petaluma model (2017a). preprintarXiv:1706.06571 · Zbl 1354.57012
[74] Even-Zohar, C., Hass, J., Linial, N., Nowik, T.: Work in progress (2017b). unpublished · Zbl 1411.57012
[75] Even-Zohar, C.: ABCDEFG: Automated business of chord diagram expectations for grids (2016a). https://github.com/chaim-e/abcdefg. Accessed 14 Dec 2016 · Zbl 1354.57012
[76] Even-Zohar, C.: Finite type invariants sampler (2016b). https://github.com/chaim-e/fti-sampler. Accessed 14 Dec 2016 · Zbl 1372.05002
[77] Even-Zohar, C.: Hyperbolic volume sampler (2016c). https://github.com/chaim-e/hv-sampler. Accessed 14 Dec 2016
[78] Even-Zohar, C, The writhe of permutations and random framed knots, Random Struct. Algorithm, 51, 121-142, (2017) · Zbl 1372.05002 · doi:10.1002/rsa.20704
[79] Even-Zohar, C; Hass, J; Linial, N; Nowik, T, Invariants of random knots and links, Discret. Comput. Geometr., 56, 274-314, (2016) · Zbl 1354.57012 · doi:10.1007/s00454-016-9798-y
[80] Farber, M; Kappeler, T, Betti numbers of random manifolds, Homol. Homotopy Appl., 10, 205-222, (2008) · Zbl 1136.55014 · doi:10.4310/HHA.2008.v10.n1.a8
[81] Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 276-289. ACM (2012) · Zbl 1348.94045
[82] Fenlon, EE, Open problems in chemical topology, Eur. J. Org. Chem., 2008, 5023-5035, (2008) · doi:10.1002/ejoc.200800578
[83] Flammini, A; Maritan, A; Stasiak, A, Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots, Biophys. J ., 87, 2968-2975, (2004) · doi:10.1529/biophysj.104.045864
[84] Flapan, E; Kozai, K, Linking number and writhe in random linear embeddings of graphs, J. Math. Chem., 54, 1117-1133, (2016) · Zbl 1346.92082 · doi:10.1007/s10910-016-0610-2
[85] Frank-Kamenetskii, MD; Lukashin, AV; Vologodskii, AV, Statistical mechanics and topology of polymer chains, Nature, 258, 398, (1975) · doi:10.1038/258398a0
[86] Frisch, HL; Wasserman, E, Chemical topology, J. Am. Chem. Soc., 83, 3789-3795, (1961) · doi:10.1021/ja01479a015
[87] Goriely, A, Knotted umbilical cords, Ser. Knots Everything, 36, 109-126, (2005) · Zbl 1092.92025 · doi:10.1142/9789812703460_0006
[88] Gromov, M, Random walk in random groups, Geometr. Funct. Anal., 13, 73-146, (2003) · Zbl 1122.20021 · doi:10.1007/s000390300002
[89] Grosberg, AY, Critical exponents for random knots, Phys. Rev. Lett., 85, 3858, (2000) · doi:10.1103/PhysRevLett.85.3858
[90] Grosberg, A; Nechaev, S, Algebraic invariants of knots and disordered Potts model, J. Phys. A: Math. Gen., 25, 4659, (1992) · Zbl 0768.57002 · doi:10.1088/0305-4470/25/17/023
[91] Grosberg, AY; Khokhlov, AR; Jelinski, LW, Giant molecules: here, there, and everywhere, Am. J. Phys., 65, 1218-1219, (1997) · doi:10.1119/1.18660
[92] Guitter, E; Orlandini, E, Monte Carlo results for projected self-avoiding polygons: a two-dimensional model for knotted polymers, J. Phys. A: Math. Gen., 32, 1359, (1999) · Zbl 0964.82057 · doi:10.1088/0305-4470/32/8/006
[93] Haken, W, Theorie der normalflächen, Acta Mathematica, 105, 245-375, (1961) · Zbl 0100.19402 · doi:10.1007/BF02559591
[94] Hall, DS; Ray, MW; Tiurev, K; Ruokokoski, E; Gheorghe, AH; Möttönen, M, Tying quantum knots, Nat. Phys., 12, 478-483, (2016) · doi:10.1038/nphys3624
[95] Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and link problems. JACM 46(2):185-211 (1999) · Zbl 1065.68667
[96] Hass, J; Nowik, T, Unknot diagrams requiring a quadratic number of Reidemeister moves to untangle, Discret. Comput. Geometr., 44, 91-95, (2010) · Zbl 1191.57006 · doi:10.1007/s00454-009-9156-4
[97] Hayashi, C; Hayashi, M; Sawada, M; Yamada, S, Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves, J. Knot Theory Ramif., 21, 1250099, (2012) · Zbl 1261.57004 · doi:10.1142/S021821651250099X
[98] Hershkovitz, R; Silberstein, T; Sheiner, E; Shoham-Vardi, I; Holcberg, G; Katz, M; Mazor, M, Risk factors associated with true knots of the umbilical cord, Eur. J. Obstetr. Gynecol. Reprod. Biol., 98, 36-39, (2001) · doi:10.1016/S0301-2115(01)00312-8
[99] Hoste, J., Thistlethwaite, M.: KnotScape, a knot polynomial calculation program (2016). https://www.math.utk.edu/ morwen/knotscape.html. Accessed 14 Dec 2016
[100] Hoste, J., Zirbel, L.: Lissajous knots and knots with Lissajous projections (2006). arXiv: math/0605632 · Zbl 1160.57006
[101] Hoste, J; Thistlethwaite, M; Weeks, J, The first 1,701,936 knots, Math. Intell., 20, 33-48, (1998) · Zbl 0916.57008 · doi:10.1007/BF03025227
[102] Hua, X; Nguyen, D; Raghavan, B; Arsuaga, J; Vazquez, M, Random state transitions of knots: a first step towards modeling unknotting by type II topoisomerases, Topol. Appl., 154, 1381-1397, (2007) · Zbl 1114.57005 · doi:10.1016/j.topol.2006.05.010
[103] Ichihara, K., Ma, J.: A random link via bridge position is hyperbolic (2016). arXiv: 1605.07267 · Zbl 1373.57016
[104] Ichihara, K., Yoshida, K.: On the most expected number of components for random links (2015). arXiv:1507.03110 · Zbl 1395.57009
[105] Ito, T, On a structure of random open books and closed braids, Proc. Jpn. Acad. Ser. A Math. Sci., 91, 160-162, (2015) · Zbl 1336.57020 · doi:10.3792/pjaa.91.160
[106] Jaeger, F; Vertigan, DL; Welsh, DJA, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc, 108, 35-53, (1990) · Zbl 0747.57006 · doi:10.1017/S0305004100068936
[107] Janse Van Rensburg, EJ; Rechnitzer, A, On the universality of knot probability ratios, J. Phys. A Math. Theor., 44, 162002, (2011) · Zbl 1216.82018 · doi:10.1088/1751-8113/44/16/162002
[108] Janse Van Rensburg, EJ; Orlandini, E; Tesi, MC; Whittington, SG, Knotting in stretched polygons, J. Phys. A Math. Theor., 41, 015003, (2007) · Zbl 1189.82052 · doi:10.1088/1751-8113/41/1/015003
[109] Jones, V.F.R., Przytycki, J.H.: Lissajous knots and billiard knots, vol. 42, pp. 145-163. Banach Center Publications, Warsaw (1998) · Zbl 0901.57012
[110] Jones, V.F.R.: Ten problems. Math. Perspect. Front. 79-91 (2000) · Zbl 0969.57001
[111] Jones, V, On knot invariants related to some statistical mechanical models, Pac. J. Math., 137, 311-334, (1989) · Zbl 0695.46029 · doi:10.2140/pjm.1989.137.311
[112] Jungreis, D, Gaussian random polygons are globally knotted, J. Knot Theory Ramif., 3, 455-464, (1994) · Zbl 0848.57008 · doi:10.1142/S0218216594000332
[113] Kahle, M.: Random simplicial complexes (2016). arXiv:1607.07069 · Zbl 1412.05180
[114] Karadayi, E.: Topics in random knots and R-matrices from Frobenius algebras. PhD thesis, University of South Florida (2010)
[115] Kauffman, L.H.: Fourier knots. Ideal knots, World Scientific, p. 19 (1998). arXiv:q-alg/9711013 · Zbl 0947.57007
[116] Kauffman, L.H.: Statistical mechanics and the Jones polynomial. Contemp. Math. 78, 175-222 (1988) · Zbl 0664.57002
[117] Kauffman, LH, State models and the Jones polynomial, Topology, 26, 395-407, (1987) · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[118] Kauffman, LH; Lambropoulou, S, On the classification of rational tangles, Adv. Appl. Math., 33, 199-237, (2004) · Zbl 1057.57006 · doi:10.1016/j.aam.2003.06.002
[119] Kehne, G.: Bipyramid decompositions of multi-crossing link complements, 2016. Advisor: Colin Adams. https://unbound.williams.edu/theses/islandora/object/studenttheses:126
[120] Kelvin, L, On vortex atoms, Proc. R. Soc. Edin, 6, 94-105, (1867)
[121] Kendall, WS, The knotting of Brownian motion in 3-space, J. Lond. Math. Soc., 2, 378-384, (1979) · Zbl 0393.60077 · doi:10.1112/jlms/s2-19.2.378
[122] Kessler, DA; Rabin, Y, Effect of curvature and twist on the conformations of a fluctuating ribbon, J. Chem. Phys., 118, 897-904, (2003) · doi:10.1063/1.1526467
[123] Kesten, H, On the number of self-avoiding walks, J. Math. Phys., 4, 960-969, (1963) · Zbl 0122.36502 · doi:10.1063/1.1704022
[124] Kleckner, D; Irvine, W, Creation and dynamics of knotted vortices, Nat. Phys., 9, 253-258, (2013) · doi:10.1038/nphys2560
[125] Kleckner, D; Kauffman, LH; Irvine, W, How superfluid vortex knots untie, Nat. Phys., 12, 650-655, (2016) · doi:10.1038/nphys3679
[126] Koniaris, K; Muthukumar, M, Knottedness in ring polymers, Phys. Rev. Lett., 66, 2211, (1991) · doi:10.1103/PhysRevLett.66.2211
[127] Koseleff, PV; Pecker, D, Chebyshev knots, J. Knot Theory Ramif., 20, 575-593, (2011) · Zbl 1218.57009 · doi:10.1142/S0218216511009364
[128] Kowalski, E.: On the complexity of Dunfield-Thurston random 3-manifolds (2010). http://www.math.ethz.ch/\({~ }\)kowalski/complexity-dunfield-thurston.pdf · Zbl 1278.57012
[129] Kuperberg, G.: How hard is it to approximate the Jones polynomial? (2009). arXiv:0908.0512 · Zbl 1337.68109
[130] Kuperberg, G, Knottedness is in NP, modulo GRH, Adv. Math., 256, 493-506, (2014) · Zbl 1358.68138 · doi:10.1016/j.aim.2014.01.007
[131] Lackenby, M.: The efficient certification of knottedness and Thurston norm (2016). arXiv:1604.00290
[132] Lackenby, M, The volume of hyperbolic alternating link complements, Proc. Lond. Math. Soc., 88, 204-224, (2004) · Zbl 1041.57002 · doi:10.1112/S0024611503014291
[133] Lackenby, M, A polynomial upper bound on Reidemeister moves, Ann. Math., 182, 491-564, (2015) · Zbl 1329.57010 · doi:10.4007/annals.2015.182.2.3
[134] Lamm, C.: Fourier knots (2012). arXiv:1210.4543
[135] Lamm, C, There are infinitely many Lissajous knots, Manuscripta Math., 93, 29-37, (1997) · Zbl 0879.57008 · doi:10.1007/BF02677455
[136] Lavi, G., Nowik, T.: Personal communication (2016) · Zbl 0971.57010
[137] Bret, M, Monte Carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA, Biopolymers, 19, 619-637, (1980) · doi:10.1002/bip.1980.360190312
[138] Lickorish, W.B.R.: An introduction to knot theory, vol. 175. Springer, New York (1997) · Zbl 0886.57001
[139] Lim, NCH; Jackson, SE, Molecular knots in biology and chemistry, J. Phys. Condens. Matter, 27, 354101, (2015) · doi:10.1088/0953-8984/27/35/354101
[140] Linial, N; Meshulam, R, Homological connectivity of random 2-complexes, Combinatorica, 26, 475-487, (2006) · Zbl 1121.55013 · doi:10.1007/s00493-006-0027-9
[141] Lissajous, J.A.: Mémoire sur l’étude optique des mouvements vibratoires. France, Paris (1857)
[142] Liu, Z; Chan, HS, Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models, J. Chem. Phys., 128, 04b610, (2008)
[143] Lubotzky, A; Maher, J; Conan, W, Random methods in 3-manifold theory, Proc. Steklov Inst. Math., 292, 118-142, (2016) · Zbl 1354.57026 · doi:10.1134/S0081543816010089
[144] Lutz, FH, Combinatorial 3-manifolds with 10 vertices, Beiträge Algebra Geom, 49, 97-106, (2008) · Zbl 1151.57025
[145] Ma, J, Components of random links, J. Knot Theory Ramif., 22, 1350043, (2013) · Zbl 1278.57012 · doi:10.1142/S0218216513500430
[146] Ma, J, The closure of a random braid is a hyperbolic link, Proc. Am. Math. Soc., 142, 695-701, (2014) · Zbl 1283.57013 · doi:10.1090/S0002-9939-2013-11775-2
[147] Madras, N., Slade, G.: The self-avoiding walk. Modern Birkhäuser Classics (2013) · Zbl 1254.01051
[148] Maher, J, Random Heegaard splittings, J. Topol., 3, 997-1025, (2010) · Zbl 1207.37027 · doi:10.1112/jtopol/jtq031
[149] Maher, J; etal., Random walks on the mapping class group, Duke Math. J., 156, 429-468, (2011) · Zbl 1213.37072 · doi:10.1215/00127094-2010-216
[150] Maher, J, Exponential decay in the mapping class group, J. Lond. Math. Soc., 86, 366-386, (2012) · Zbl 1350.37010 · doi:10.1112/jlms/jds011
[151] Malyutin, A.: On the question of genericity of hyperbolic knots (2016). arXiv:1612.03368 · Zbl 1151.57025
[152] Malyutin, A, Quasimorphisms, random walks, and transient subsets in countable groups, J. Math. Sci., 181, 871-885, (2012) · Zbl 1258.60033 · doi:10.1007/s10958-012-0721-7
[153] Marenduzzo, D; Orlandini, E; Stasiak, A; Tubiana, L; Micheletti, C; etal., DNA-DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting, Proc. Natl. Acad. Sci., 106, 22269-22274, (2009) · doi:10.1073/pnas.0907524106
[154] McLeish, T, A tangled tale of topological fluids, Phys. Today, 61, 40-45, (2008) · doi:10.1063/1.2970211
[155] Micheletti, C; Marenduzzo, D; Orlandini, E; Sumners, DW, Simulations of knotting in confined circular DNA, Biophys. J ., 95, 3591-3599, (2008) · doi:10.1529/biophysj.108.137653
[156] Micheletti, C; Marenduzzo, D; Orlandini, E, Polymers with spatial or topological constraints: theoretical and computational results, Phys. Rep., 504, 1-73, (2011) · Zbl 1211.82070 · doi:10.1016/j.physrep.2011.03.003
[157] Michels, JPJ; Wiegel, FW, Probability of knots in a polymer ring, Phys. Lett. A, 90, 381-384, (1982) · doi:10.1016/0375-9601(82)90636-3
[158] Michels, JPJ; Wiegel, FW, On the topology of a polymer ring, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 403, 269-284, (1986) · Zbl 0583.57002 · doi:10.1098/rspa.1986.0012
[159] Michels, JPJ; Wiegel, FW, The distribution of Alexander polynomials of knots confined to a thin layer, J. Phys. A Math. Gen., 22, 2393, (1989) · Zbl 0689.57004 · doi:10.1088/0305-4470/22/13/032
[160] Millett, K.C., Rawdon, E.J.: Universal characteristics of polygonal knot probabilities. In: Calvo, J.A., Millett, K.C., Rawdon, E.J., Stasiak, A. (eds) Physical and Numerical Models in Knot Theory, eds. , Ser. Knots Everything, vol. 36, pp. 247-274 (2005) · Zbl 1101.82010
[161] Millett, K.C.: Monte Carlo explorations of polygonal knot spaces. In: Knots in Hellas ’98—Proceedings of the International Conference on Knot Theory and Its Ramifications, vol. 24, p. 306. World Scientific (2000) · Zbl 0970.57007
[162] Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms and probabilistic analysis. Cambridge University Press, Cambridge (2005) · Zbl 1092.60001
[163] Nechaev, S.K.: Statistics of knots and entangled random walks. World Scientific, Singapore (1996) · Zbl 0868.57003
[164] Obeidin, M.: Volumes of random alternating link diagrams (2016). arXiv:1611.04944 · Zbl 1354.57026
[165] Ohtsuki, T; etal., Problems on invariants of knots and 3-manifolds, Geometr. Topol. Monogr., 4, 377-572, (2002) · Zbl 1163.57302
[166] Ollivier, Y.: A invitation to random groups. Ensaios Matemticos 10, 1-100 (2005) · Zbl 1163.20311
[167] Orlandini, E; Whittington, G, Statistical topology of closed curves: some applications in polymer physics, Rev. Mod. Phys., 79, 611, (2007) · Zbl 1205.82153 · doi:10.1103/RevModPhys.79.611
[168] Orlandini, E; Janse Van Rensburg, EJ; Tesi, MC; Whittington, SG, Random linking of lattice polygons, J. Phys. A Math. Gen., 27, 335, (1994) · Zbl 0820.60100 · doi:10.1088/0305-4470/27/2/018
[169] Orlandini, E; Tesi, MC; Janse Van Rensburg, EJ; Whittington, SG, Asymptotics of knotted lattice polygons, J. Phys. A Math. Gen., 31, 5953, (1998) · Zbl 0953.82031 · doi:10.1088/0305-4470/31/28/010
[170] O’Rourke, J.: Complexity of random knot with vertices on sphere. Retrieved from MathOverflow (2011). http://mathoverflow.net/q/54412
[171] Panagiotou, E; Millett, KC; Lambropoulou, S, The linking number and the writhe of uniform random walks and polygons in confined spaces, J. Phys. A Math. Theor., 43, 045208, (2010) · Zbl 1187.82052 · doi:10.1088/1751-8113/43/4/045208
[172] Pippenger, N, Knots in random walks, Discret. Appl. Math., 25, 273-278, (1989) · Zbl 0681.57001 · doi:10.1016/0166-218X(89)90005-X
[173] Pippenger, N; Schleich, K, Topological characteristics of random triangulated surfaces, Random Struct. Algorithms, 28, 247-288, (2006) · Zbl 1145.52009 · doi:10.1002/rsa.20080
[174] Polyak, M, Invariants of curves and fronts via Gauss diagrams, Topology, 37, 989-1009, (1998) · Zbl 0961.57015 · doi:10.1016/S0040-9383(97)00013-X
[175] Rappaport, SM; Rabin, Y, Differential geometry of polymer models: worm-like chains, ribbons and Fourier knots, J. Phys. A Math. Theor., 40, 4455, (2007) · Zbl 1189.82141 · doi:10.1088/1751-8113/40/17/003
[176] Rappaport, SM; Rabin, Y; Grosberg. , AY, Worm-like polymer loops and Fourier knots, J. Phys. A Math. Gen., 39, l507, (2006) · Zbl 1099.82522 · doi:10.1088/0305-4470/39/30/L04
[177] Raymer, DM; Smith, DE, Spontaneous knotting of an agitated string, Proc. Nat. Acad. Sci., 104, 16432-16437, (2007) · doi:10.1073/pnas.0611320104
[178] Richmond, BL; Wormald, NC, Almost all maps are asymmetric, J. Comb. Theory Ser. B, 63, 1-7, (1995) · Zbl 0820.05017 · doi:10.1006/jctb.1995.1001
[179] Rivin, I.: Random space and plane curves (2016). arXiv:1607.05239 · Zbl 1332.15095
[180] Rivin, I.: Statistics of random 3-manifolds occasionally fibering over the circle (2014). arXiv:1401.5736
[181] Rolfsen, D.: Knots and links, vol. 346. American Mathematical Soc. (1976) · Zbl 0339.55004
[182] Schaeffer, G; Zinn-Justin, P, On the asymptotic number of plane curves and alternating knots, Exp. Math., 13, 483-493, (2004) · Zbl 1063.05015 · doi:10.1080/10586458.2004.10504557
[183] Sergei, K; Nechaev, A; Grosberg, Y; Vershik, AM, Random walks on braid groups: Brownian bridges, complexity and statistics, J. Phys. A Math. Gen., 29, 2411, (1996) · Zbl 0901.60010 · doi:10.1088/0305-4470/29/10/020
[184] Soret, M; Ville, M, Lissajous and Fourier knots, J. Knot Theory Ramif., 25, 1650026, (2016) · Zbl 1337.57033 · doi:10.1142/S0218216516500267
[185] Soteros, CE; Sumners, DW; Whittington, SG, Entanglement complexity of graphs in \(\mathbb{Z}^3\), Math. Proc. Cambridge Philos. Soc., 111, 75-91, (1992) · Zbl 0769.57007 · doi:10.1017/S0305004100075174
[186] Soteros, CE; Sumners, DW; Whittington, SG, Linking of random p-spheres in \(\mathbb{Z}^d\), J. Knot Theory Ramif., 8, 49-70, (1999) · Zbl 0933.57021 · doi:10.1142/S0218216599000067
[187] Soteros, CE; Sumners, DW; Whittington, SG, Knotted 2-spheres in tubes in \(\mathbb{Z}^4\), J. Knot Theory Ramif., 21, 1250116, (2012) · Zbl 1264.57009 · doi:10.1142/S0218216512501167
[188] Sumners, DW, Knot theory and DNA, Proc. Symp. Appl. Math., 45, 39-72, (1992) · Zbl 0772.57014 · doi:10.1090/psapm/045/1196715
[189] Sumners, DW, Lifting the curtain: using topology to probe the hidden action of enzymes, Not. Am. Math. Soc., 42, 528-537, (1995) · Zbl 1003.92515
[190] Sumners, DW; Whittington, SG, Knots in self-avoiding walks, J. Phys. A Math. Gen., 21, 1689, (1988) · Zbl 0659.57003 · doi:10.1088/0305-4470/21/7/030
[191] Sumners, D.W., Berger, M.A., Kauffman, L.H., Khesin, B., Moffatt, H.K., Ricca, R.L.: Lectures on topological fluid mechanics. Springer, New York (2009)
[192] Sundberg, C; Thistlethwaite, M, The rate of growth of the number of prime alternating links and tangles, Pac. J. Math., 182, 329-358, (1998) · Zbl 0901.57008 · doi:10.2140/pjm.1998.182.329
[193] Szafron, ML; Soteros, CE, Knotting probabilities after a local strand passage in unknotted self-avoiding polygons, J. Phys. A Math. Theor., 44, 245003, (2011) · Zbl 1220.82031 · doi:10.1088/1751-8113/44/24/245003
[194] Tait, PG, The first seven orders of knottiness, Tran. Roy. Soc. Edinburgh, 32, 327-342, (1884) · doi:10.1017/S0080456800026806
[195] Taylor, A.J., Dennis, M.R.: Vortex knots in tangled quantum eigenfunctions. Nat. Commun. 7, 12346 (2016). https://doi.org/10.1038/ncomms12346
[196] Thistlethwaite, M, On the structure and scarcity of alternating links and tangles, J. Knot Theory Ramif., 7, 981-1004, (1998) · Zbl 0971.57010 · doi:10.1142/S021821659800053X
[197] Thurston, B.: Complexity of random knot with vertices on sphere. MathOverflow (2011). http://mathoverflow.net/q/54417
[198] Thurston, W.: The geometry and topology of 3-manifolds. http://library.msri.org/books/gt3m/. Lecture notes (1978)
[199] Trautwein, A.K.: Harmonic knots. Ph.D. Thesis, University of Iowa (1995) · Zbl 0946.57007
[200] Janse van Rensburg, EJ; Whittington, SG, The knot probability in lattice polygons, J. Phys. A Math. Gen., 23, 3573, (1990) · Zbl 0709.57001 · doi:10.1088/0305-4470/23/15/028
[201] Vasilyev, OA; Nechaev, SK, Thermodynamics and topology of disordered systems: statistics of the random knot diagrams on finite lattices, J. Exp. Theor. Phys., 93, 1119-1136, (2001) · doi:10.1134/1.1427184
[202] Vassiliev, VA, Cohomology of knot spaces, Theory Singul. Appl. (Providence), 1, 23-69, (1990) · Zbl 0727.57008
[203] Vologodskii, A.: Topology and Physics of Circular DNA. CRC, Boca Raton, FL (1992) · Zbl 1133.57004
[204] Helmholtz, H, Lxiii. on integrals of the hydrodynamical equations, which express vortex-motion, Lond. Edinburgh Dublin Philos. Mag. J. Sci., 33, 485-512, (1867)
[205] Wasserman, WA; Cozzarelli, NR, Biochemical topology: applications to DNA recombination and replication, Science, 232, 951-960, (1986) · doi:10.1126/science.3010458
[206] Wasserman, SA; Dungan, JM; Cozzarelli, NR, Discovery of a predicted DNA knot substantiates a model for site-specific recombination, Science, 229, 171-174, (1985) · doi:10.1126/science.2990045
[207] Welsh, DJA, On the number of knots and links, Colloq. Math. Soc. Janos Bolyai, 59, 1-6, (1991)
[208] Westenberger, C.: Knots and links from random projections (2016). arXiv:1602.01484 · Zbl 1222.82069
[209] Willerton, S, On the first two Vassiliev invariants, Exp. Math., 11, 289-296, (2002) · Zbl 1116.57300 · doi:10.1080/10586458.2002.10504692
[210] Winfree, AT; Strogatz, SH, Organizing centres for three-dimensional chemical waves, Nature, 311, 611-615, (1984) · doi:10.1038/311611a0
[211] Wise D.: Personal Communication (2016)
[212] Witte, S., Brasher, R., Vazquez, M.: Randomly sampling grid diagrams of knots. Retrieved (2016). http://www.math.ucdavis.edu/ slwitte/research/BlackwellTapiaPoster.pdf
[213] Wu, FY, Knot theory and statistical mechanics, Rev. Mod. Phys., 64, 1099, (1992) · doi:10.1103/RevModPhys.64.1099
[214] Zintzen, V., Roberts, C.D., Anderson, M.J., Stewart, A.L., Struthers, C.D., Harvey, E.S.: Hagfish predatory behaviour and slime defence mechanism. Sci. Rep. 1, 131 (2011). https://doi.org/10.1038/srep00131 · Zbl 1098.57003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.