×

Non-Hermitian Ising model at finite temperature. (English) Zbl 1519.82010

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B10 Quantum equilibrium statistical mechanics (general)
82B26 Phase transitions (general) in equilibrium statistical mechanics
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
Full Text: DOI

References:

[1] De Cipra, B. A., An introduction to the Ising model, Am. Math. Monthly, 94, 937 (1987) · doi:10.1080/00029890.1987.12000742
[2] Binder, K., Finite size scaling analysis of ising model block distribution functions Z, Phys. B Condens. Matter, 43, 119 (1981) · doi:10.1007/BF01293604
[3] Newell, G. F.; Montroll, E. W., On the theory of the Ising model of ferromagnetism, Rev. Mod. Phys., 25, 353 (1953) · Zbl 0053.18601 · doi:10.1103/RevModPhys.25.353
[4] Pfeuty, P., The one-dimensional Ising model with a transverse field, Ann. Phys., 57, 79 (1970) · doi:10.1016/0003-4916(70)90270-8
[5] Elliott, R. J.; Wood, C., The Ising model with a transverse field. I. High temperature expansion, J. Phys. C: Solid St. Phys., 4, 2359 (1971) · doi:10.1088/0022-3719/4/15/023
[6] Pfeuty, P.; Elliott, R. J., The Ising model with a transverse field. II. Ground state properties, J. Phys. C: Solid St. Phys., 4, 2370 (1971) · doi:10.1088/0022-3719/4/15/024
[7] Stinchcombe, R. B., Ising model in a transverse field. I. Basic theory, J. Phys. C: Solid St. Phys., 6, 2459 (1973) · doi:10.1088/0022-3719/6/15/009
[8] Elliott, R. J.; Pfeuty, P.; Wood, C., Ising model with a transverse field, Phys. Rev. Lett., 25, 443 (1970) · doi:10.1103/PhysRevLett.25.443
[9] Sachdev, S., Quantum Phase Transitions (1999), Cambridge, UK: Cambridge University Press, Cambridge, UK
[10] Carr, L. D., Understanding Quantum Phase Transitions (2010), Boca Raton: CRC Press, Boca Raton
[11] Suzuki, S.; Inoue, J.; Chakrabarti, B. K., Quantum Ising Phases and Transitions in Transverse Ising Models (2012), Heidelberg: Springer, Heidelberg
[12] Heyl, M.; Polkovnikov, A.; Kehrein, S., Dynamical quantum phase transitions in the transverse-field ising model, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.135704
[13] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70, 947 (2007) · doi:10.1088/0034-4885/70/6/R03
[14] Ashida, Y.; Gong, Z.; Ueda, M., Non-hermitian physics, Adv. Phys., 69, 249 (2020) · doi:10.1080/00018732.2021.1876991
[15] Brody, D. C., Biorthogonal quantum mechanics, J. Phys. A: Math. Theor., 47 (2014) · Zbl 1283.81070 · doi:10.1088/1751-8113/47/3/035305
[16] Heiss, W. D., Exceptional points of non-Hermitian operators, J. Phys. A: Math. Theor., 37, 2455-2467 (2004) · Zbl 1044.81039 · doi:10.1088/0305-4470/37/6/034
[17] Heiss, W. D., The physics of exceptional points, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1263.81163 · doi:10.1088/1751-8113/45/44/444016
[18] Bender, C. M., Real spectra in non-Hermitian Hamiltonians having PT-symmetry, Phys. Rev. Lett., 80, 5243-5246 (1998) · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[19] Bender, C. M.; Brody, D. C.; Jones, H. F., Complex extension of quantum mechanics, Phys. Rev. Lett., 89 (2002) · Zbl 1267.81234 · doi:10.1103/PhysRevLett.89.270401
[20] Ahmed, Z., Pseudo-hermiticity of hamiltonians under gauge-like transformation: real spectrum of non-hermitian hamiltonians, Phys. Lett. A, 294, 287-291 (2002) · Zbl 0990.81029 · doi:10.1016/S0375-9601(02)00124-X
[21] Mostafazadeh, A.; Mostafazadeh, A.; Mostafazadeh, A., Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys.. J. Math. Phys.. J. Math. Phys., 43, 3944 (2002) · Zbl 1061.81075 · doi:10.1063/1.1489072
[22] Rüer, C. E.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Segev, M.; Kip, D., Observation of parity-time symmetry in optics, Nat. Phys., 6, 192 (2010) · doi:10.1038/nphys1515
[23] Hang, C.; Huang, G.; Konotop, V. V., PT-symmetry with a system of three-Level atoms, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.083604
[24] Peng, P.; Cao1, W.; Shen, C.; Qu, W.; Wen, J.; Jiang, L.; Xiao, Y., Anti-parity-time symmetry with flying atoms, Nat. Phys., 12, 1139-1145 (2016) · doi:10.1038/nphys3842
[25] Zhang, Z.; Zhang, Z.; Zhang, Y.; Sheng, J.; Yang, L.; Miri, M-A; Christodoulides, D. N.; He, B.; Zhang, Y.; Xiao, M., Observation of Parity-Time symmetry in optically induced atomic lattices, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.123601
[26] Bender, N.; Factor, S.; Bodyfelt, J. D.; Ramezani, H.; Christodoulides, D. N.; Ellis, F. M.; Kottos, T., Observation of asymmetric transport in structures with active nonlinearities, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.234101
[27] Assawaworrarit, S.; Yu, X.; Fan, S., Robust wireless power transfer using a nonlinear parity-time-symmetric circuit, Nature, 546, 387 (2017) · doi:10.1038/nature22404
[28] Choi, Y.; Hahn, C.; Yoon, J. W.; Song, S. H., Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun., 9, 2182 (2018) · doi:10.1038/s41467-018-04690-y
[29] Bittner, S.; Dietz, B.; G¨ther, U.; Harney, H. L.; Miski-Oglu, M.; Richter, A.; Schfer, F., PT-symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.024101
[30] Zhu, X.; Ramezani, H.; Shi, C.; Zhu, J.; Zhang, X., PT-symmetric acoustics, Phys. Rev. X, 4 (2014) · doi:10.1103/PhysRevX.4.031042
[31] Popa, B-I; Cummer, S. A., Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun., 5, 3398 (2014) · doi:10.1038/ncomms4398
[32] Fleury, R.; Sounas, D.; Alù, A., An invisible acoustic sensor based on parity-time symmetry, Nat. Commun., 6, 5905 (2015) · doi:10.1038/ncomms6905
[33] Wu, Y.; Liu, W.; Geng, J.; Song, X.; Ye, X.; Duan, C-K; Rong, X.; Du, J., Observation of parity-time symmetry breaking in a single-spin system, Science, 364, 878 (2019) · Zbl 1431.82002 · doi:10.1126/science.aaw8205
[34] Kunst, F. K.; Edvardsson, E.; Budich, J. C.; Bergholtz, E. J., Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.026808
[35] Yokomizo, K.; Murakami, S., Non-Bloch band theory of non-Hermitian systems, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.066404
[36] Xiao, L.; Deng, T.; Wang, K.; Zhu, G.; Wang, Z.; Yi, W.; Xue, P., Non-Hermitian bulk¨Cboundary correspondence in quantum dynamics, Nat. Phys., 16, 761-766 (2020) · doi:10.1038/s41567-020-0836-6
[37] Yang, Z.; Zhang, K.; Fang, C.; Hu, J., Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.226402
[38] Xiong, Y., Why does bulk boundary correspondence fail in some non-hermitian topological models, J. Phys. Commun., 2 (2018) · doi:10.1088/2399-6528/aab64a
[39] Yao, S.; Song, F.; Wang, Z., Non-hermitian chern bands, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.136802
[40] Wang, X-R; Guo, C-X; Kou, S-P, Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems, Phys. Rev. B, 101 (2020) · doi:10.1103/PhysRevB.101.121116
[41] Yao, S.; Wang, Z., Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.086803
[42] Song, F.; Yao, S.; Wang, Z., Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.170401
[43] Okuma, N.; Kawabata, K.; Shiozaki, K.; Sato, M., Topological origin of non-Hermitian skin effects, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.086801
[44] Du, Q.; Cao, K.; Kou, S-P, Physics of PT-symmetric quantum systems at finite temperatures, Phys. Rev. A, 106 (2022) · doi:10.1103/PhysRevA.106.032206
[45] Deguchi, T.; Ghosh, P. K., The exactly solvable quasi-Hermitian transverse Ising model, J. Phys. A, 42 (2009) · Zbl 1183.82012 · doi:10.1088/1751-8113/42/47/475208
[46] Kitaev, A. Y., Unpaired Majorana fermions in quantum wires, Phys. Usp., 44, 131 (2001) · doi:10.1070/1063-7869/44/10S/S29
[47] Li, C.; Zhang, X. Z.; Zhang, G.; Song, Z., Topological phases in a Kitaev chain with imbalanced pairing, Phys. Rev. B, 97 (2018) · doi:10.1103/PhysRevB.97.115436
[48] Zhao, X-M; Guo, C-X; Yang, M-L; Wang, H.; Liu, W-M; Kou, S-P, Anomalous non-Abelian statistics for non-Hermitian generalization of Majorana zero modes, Phys. Rev. B, 104 (2021) · doi:10.1103/PhysRevB.104.214502
[49] Bunder, J. E.; McKenzie, R. H., Effect of disorder on quantum phase transitions in anisotropic XY spin chains in a transverse field, Phys. Rev. B, 60, 344 (1999) · doi:10.1103/PhysRevB.60.344
[50] Campbell, S.; Richens, J.; Gullo, N. L.; Busch, T., Criticality, factorization, and long-range correlations in the anisotropic XY model, Phys. Rev. A, 88 (2013) · doi:10.1103/PhysRevA.88.062305
[51] Luo, Q.; Zhao, J.; Wang, X., Fidelity susceptibility of the anisotropic XY model: The exact solution, Phys. Rev. A, 98 (2018) · doi:10.1103/PhysRevE.98.022106
[52] Lieb, E.; Schultz, T.; Mattis, D., Two soluble models of an antiferromagnetic chain, Ann. Phys., 16, 407 (1961) · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.