×

Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. (English) Zbl 1320.57016

Reshetikhin-Turaev (RT) invariants are constructed in the context of semi-simple categories of representations of quantum groups with some extra structure and satisfying some extra conditions (modular categories). The paper under review extends this RT construction to the case of non-semi-simple categories of representations of a quantum group \(\bar{U}^H_q(\mathfrak{sl}(2))\) (the construction for other quantum groups is briefly discussed in Section 6). For a closed oriented \(3\)-manifold \(M\), a coloured link \(T\) in \(M\), and an element \(\omega\in H^1(M\setminus T;\mathbb{C}/2\mathbb{Z})\), the families of invariants \(N_r(M,T,\omega)\) and \(N_r^0(M,T,\omega)\) that they obtain are computable and new, and are stronger than the RT invariants (Sections 2.1 and 2.3). They also admit a statement of the Volume Conjecture which the authors prove for an infinite class of links (Section 2.2). The invariants \(N_r(S^3,T,\omega)\) contain the multivariable Alexander polynomial, Kashaev’s invariant, and the ADO invariant of the link \(T\) much in the same way that the RT invariants contain quantum invariants of links. The construction contains several subtleties and rests on the notion of quantum dimension as defined by the last two authors and V. Turaev [Compos. Math. 145, No. 1, 196–212 (2009; Zbl 1160.81022)].
Several directions are suggested for future research, including extending these invariants to TQFTs and relating them to non-semi-simple analogues of Turaev-Viro invariants [N. Geer et al., Adv. Math. 228, No. 2, 1163–1202 (2011; Zbl 1237.57011)].

MSC:

57K10 Knot theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] Y.Akutsu, T.Deguchi, T.Ohtsuki, ‘Invariants of colored links’, J. Knot Theory Ramifications, 1 (1992) 161-184. · Zbl 0758.57004
[2] J. E.Andersen, R.Kashaev, ‘A TQFT from quantum Teichmüller theory’, Preprint, 2011, arXiv:1109.6295.
[3] S.Baseilhac, R.Benedetti, ‘Classical and quantum dilogarithmic invariants of flat \(\text{PSL} ( 2 , C )\)‐bundles over 3‐manifolds’, Geom. Topol., 9 (2005) 493-569. · Zbl 1093.57005
[4] B. C.Berndt, R. J.Evans, K. S.Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts (A Wiley‐Interscience Publication, Wiley, New York, 1998). · Zbl 0906.11001
[5] C.Blanchet, N.Habegger, G.Masbaum, P.Vogel, ‘Topological quantum field theories derived from the Kauffman bracket’, Topology, 34 (1995) 883-927. · Zbl 0887.57009
[6] F.Costantino, ‘\( 6 j\)‐symbols, hyperbolic structures and the volume conjecture’, Geom. Topol., 11 (2007) 1831-1853. · Zbl 1132.57011
[7] F.Costantino, N.Geer, B.Patureau Mirand, ‘Relations between Witten-Reshetikhin-Turaev and non semi‐simple sl(2) 3‐manifold invariants’, Preprint, 2013, arXiv:1310.2735.
[8] F.Costantino, J.Murakami, ‘On \(\text{SL} ( 2 , \mathbb{C} )\) quantum \(6 j\)‐symbols and its relation to the hyperbolic volume’, Quantum Topol., 4 (2013) 303-351. · Zbl 1280.57013
[9] F.Costantino, D.Thurston, ‘3‐manifolds efficiently bound 4‐manifolds’, J. Topol., 1 (2008) 703-745. · Zbl 1166.57016
[10] C.De Concini, V. G.Kac, ‘Representations of quantum groups at roots of \(1\)’, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progress in Mathematics 92 (Birkhauser Boston, Boston, 1990) 471-506. · Zbl 0738.17008
[11] N.Geer, R.Kashaev, V.Turaev, ‘Tetrahedral forms in monoidal categories and 3‐manifold invariants’, J. reine angew. Math., 673 (2012) 69-123. · Zbl 1261.57013
[12] N.Geer, B.Patureau‐Mirand, ‘Multivariable link invariants arising from \(\text{sl} ( 2 | 1 )\) and the Alexander polynomial’, J. Pure Appl. Algebra, 210 (2007) 283-298. · Zbl 1121.57005
[13] N.Geer, B.Patureau‐Mirand, ‘Polynomial 6j‐symbols and states sums’, Algebr. Geom. Topol., 11 (2011) 1821-1860. · Zbl 1232.57015
[14] N.Geer, B.Patureau‐Mirand, ‘Topological invariants from non‐restricted quantum groups’, Algebr. Geom. Topol., 13 (2013) 3305-3363. · Zbl 1273.17018
[15] N.Geer, B.Patureau‐Mirand, V.Turaev, ‘Modified quantum dimensions and re‐normalized link invariants’, Compos. Math., 145 (2009) 196-212. · Zbl 1160.81022
[16] N.Geer, B.Patureau‐Mirand, V.Turaev, ‘Modified 6j‐symbols and 3‐manifold invariants’, Adv. Math., 228 (2011) 1163-1202. · Zbl 1237.57011
[17] R.Gompf, A.Stipsicz, 4‐manifolds and Kirby calculus (American Mathematical Society, Providence, RI, 1999). · Zbl 0933.57020
[18] M.Hennings, ‘Invariants of links and 3‐manifolds obtained from Hopf algebras’, J. London Math. Soc., (2)54 (1996) 594-624. · Zbl 0882.57002
[19] L. C.Jeffrey, ‘Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation’, Comm. Math. Phys., 147 (1992) 563-604. · Zbl 0755.53054
[20] R.Kashaev, ‘A link invariant from quantum dilogarithm’, Modern Phys. Lett. A, 10 (1995) 1409-1418. · Zbl 1022.81574
[21] R.Kashaev, ‘Quantum hyperbolic invariants of knots’, Discrete integrable geometry and physics (Vienna, 1996), Oxford Lecture Series in Mathematics and its Applications 16 (Oxford University Press, New York, 1999) 343-359. · Zbl 0930.57009
[22] R.Kashaev, N.Reshetikhin, ‘Invariants of tangles with flat connections in their complements’, Graphs and patterns in mathematics and theoretical physics, Proceedings of Symposia in Pure Mathematics 73 (American Mathematical Society, Providence, RI, 2005) 151-172. · Zbl 1083.57018
[23] R.Kirby, ‘A calculus for framed links’, Invent. Math., 45 (1978) 35-56. · Zbl 0377.55001
[24] R.Kirby, P.Melvin, ‘The 3‐manifold invariants of Witten and Reshetikhin-Turaev for \(s l ( 2 , \mathbb{C} )\)’, Invent. Math., 105 (1991) 473-545. · Zbl 0745.57006
[25] G.Kuperberg, ‘Involutory Hopf algebras and 3‐manifold invariants’, Internat. J. Math., 2 (1991) 41-66. · Zbl 0726.57016
[26] T. Q.Le, A. T.Tran, ‘On the volume conjecture for cables of knots’, J. Knot Theory Ramifications, 19 (2010) 1673-1691. · Zbl 1229.57019
[27] J.Murakami, ‘Colored Alexander invariants and cone‐manifolds’, Osaka J. Math., 45 (2008) 541-564. · Zbl 1157.57007
[28] H.Murakami, J.Murakami, ‘The colored Jones polynomials and the simplicial volume of a knot’, Acta Math., 186 (2001) 85-104. · Zbl 0983.57009
[29] J.Murakami, K.Nagatomo, ‘Logarithmic knots invariants arising from restricted quantum groups’, Internat. J. Math., 19 (2008) 1203-1213. · Zbl 1210.57016
[30] T.Ohtsuki, Quantum invariants. A study of knots, 3‐manifolds, and their sets, Series on Knots and Everything 29 (World Scientific Publishing Co., Inc., River Edge, NJ, 2002). · Zbl 0991.57001
[31] N.Reshetikhin, V. G.Turaev, ‘Ribbon graphs and their invariants derived from quantum groups’, Comm. Math. Phys., 127 (1990) 1-26. · Zbl 0768.57003
[32] N.Reshetikhin, V. G.Turaev, ‘Invariants of 3‐manifolds via link polynomials and quantum groups’, Invent. Math., 103 (1991) 547-597. · Zbl 0725.57007
[33] J.Roberts, ‘Kirby calculus in manifolds with boundary’, Turkish J. Math., 21 (1997) 111-117. · Zbl 0899.57009
[34] V. G.Turaev, Quantum invariants of knots and 3‐manifolds, de Gruyter Studies in Mathematics 18 (Walter de Gruyter & Co., Berlin, 1994). · Zbl 0812.57003
[35] A.Virelizier, ‘Kirby elements and quantum invariants’, Proc. London Math. Soc., 93 (2006) 474-514. · Zbl 1114.57016
[36] O.Viro, ‘Quantum relatives of the Alexander polynomial’, Algebra i Analiz, 18 (2006) 63-157; translation in St. Petersburg Math. J. 18 (2007) 391-457. · Zbl 1149.57024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.