×

Spin chains as modules over the affine Temperley-Lieb algebra. (English) Zbl 1537.16024

Summary: The affine Temperley-Lieb algebra \(\mathsf{aTL}_N ( \beta )\) is an infinite-dimensional algebra over \(\mathbb{C}\) parametrized by a number \(\beta \in \mathbb{C}\) and an integer \(N\in \mathbb{N} \). It naturally acts on \((\mathbb{C}^2)^{\otimes N}\) to produce a family of representations labeled by an additional parameter \(z\in \mathbb{C}^{\times } \). The structure of these representations, which were first introduced by V. Pasquier and H. Saleur [“Common structures between finite systems and conformal field theories through quantum groups”, Nucl. Phys., B 330, No. 2–3, 523–553 (1990; doi:10.1016/0550-3213(90)90122-T)] in their study of spin chains, is here made explicit. They share their composition factors with the cellular \(\mathsf{aTL}_N ( \beta )\)-modules of J. J. Graham and G. I. Lehrer [Enseign. Math. (2) 44, No. 3–4, 173–218 (1998; Zbl 0964.20002)], but differ from the latter by the direction of about half of the arrows of their Loewy diagrams. The proof of this statement uses a morphism introduced by A. Morin-Duchesne and Y. Saint-Aubin [J. Phys. A, Math. Theor. 46, No. 28, Article ID 285207, 34 p. (2013; Zbl 1285.82018)] as well as new maps that intertwine various \(\mathsf{aTL}_N ( \beta )\)-actions on the periodic chain and generalize applications studied by T. Deguchi et al. [J. Stat. Phys. 102, No. 3–4, 701–736 (2001; Zbl 0990.82008)] and after by A. Morin-Duchesne and Y. Saint-Aubin [J. Phys. A, Math. Theor. 46, No. 49, Article ID 494013, 46 p. (2013; Zbl 1283.81112)].

MSC:

16G99 Representation theory of associative rings and algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
20G42 Quantum groups (quantized function algebras) and their representations
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Alcaraz, F.; Grimm, U.; Rittenberg, V., The XXZ Heisenberg chain, conformal invariance and the operator content of c < 1 systems, Nucl. Phys. B, 316, 735-768 (1989) · Zbl 0664.17013 · doi:10.1016/0550-3213(89)90066-7
[2] Andersen, H., Simple modules for Temperley-Lieb algebras and related algebras, J. Algebra, 520, 276-308 (2019) · Zbl 1448.17009 · doi:10.1016/j.jalgebra.2018.10.035
[3] Andersen, H.; Polo, P.; Wen, K., Representations of quantum algebras, Inventiones mathematicae, 120, 1, 409-410 (1995) · Zbl 0870.17008 · doi:10.1007/BF01241135
[4] Andersen, H.; Stroppel, C.; Tubbenhauer, D., Semisimplicity of Hecke and (walled) Brauer algebras, J. Aust. Math. Soc., 103, 1, 1-44 (2017) · Zbl 1403.17016 · doi:10.1017/S1446788716000392
[5] Andersen, H.; Tubbenhauer, D., Diagram categories for Uq-tilting modules at roots of unity, Transform. Groups, 1, 29-89 (2017) · Zbl 1427.16025 · doi:10.1007/s00031-016-9363-z
[6] Belletête, J., Gainutdinov, A., Jacobsen, J., Saleur, H., Tavares, T.: Topological defects in lattice models and affine Temperley-Lieb algebras. arXiv:1811.02551 (2018) · Zbl 1538.82016
[7] Belletête, J., Gainutdinov, A., Jacobsen, J., Saleur, H., Tavares, T.: Topological defects in the affine Temperley-Lieb algebra: The critical cases in preparation (2022) · Zbl 1538.82016
[8] Belletête, J.; Saint-Aubin, Y., On the computation of fusion over the affine Temperley-Lieb algebra, Nucl. Phys. B, 937, 333-370 (2018) · Zbl 1402.81214 · doi:10.1016/j.nuclphysb.2018.10.016
[9] Bushlanov, P.; Feigin, B.; Gainutdinov, A.; Tipunin, I., Lusztig limit of quantum sl(2) at root of unity and fusion of (1, p) Virasoro logarithmic minimal models, Nuclear Phys. B, 818, 3, 179-195 (2009) · Zbl 1194.81121 · doi:10.1016/j.nuclphysb.2009.03.016
[10] Chari, V.; Pressley, A., A guide to quantum groups (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0839.17010
[11] Cox, A.: Ext^1 for Weyl modules for q-GL(2,k). In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 124, pp 231-251. Cambridge University Press (1998) · Zbl 0911.20033
[12] Deguchi, T.; Fabricius, K.; McCoy, B., The sl2 loop algebra symmetry of the six-vertex model at roots of unity, J. Stat. Phys., 102, 701-736 (2001) · Zbl 0990.82008 · doi:10.1023/A:1004894701900
[13] Feigin, B.; Fuks, D., Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Applic., 16, 2, 114-126 (1982) · Zbl 0505.58031 · doi:10.1007/BF01081626
[14] Gainutdinov, A.; Read, N.; Saleur, H., Bimodule structure in the periodic gℓ(1|1) spin chain, Nucl. Phys. B, 871, 289-329 (2013) · Zbl 1262.81159 · doi:10.1016/j.nuclphysb.2013.02.017
[15] Gainutdinov, A.; Read, N.; Saleur, H., Associative algebraic approach to logarithmic CFT in the bulk: The continuum limit of the gℓ(1|1) periodic spin chain, Howe duality and the interchiral algebra, Comm. Math. Phys., 341, 35-103 (2016) · Zbl 1333.81366 · doi:10.1007/s00220-015-2483-9
[16] Graham, J.; Lehrer, G., Cellular algebras, Inv. Math., 123, 1-34 (1996) · Zbl 0853.20029 · doi:10.1007/BF01232365
[17] Graham, J.; Lehrer, G., The representation theory of affine Temperley-Lieb algebras, Enseign. Math., 44, 173-218 (1998) · Zbl 0964.20002
[18] Graham, J., Lehrer, G.: Cellular algebras and diagram algebras in representation theory. In: Representation Theory of Algebraic Groups and Quantum Groups, pp. 141-173 (2004) · Zbl 1135.20302
[19] Green, R.: On representations of affine Temperley-Lieb algebras. In: Conference Proceedings, Canadian Mathematical Society, vol. 24. American Mathematical Society (1998) · Zbl 0940.20049
[20] Jantzen, J., Lectures on Quantum Groups, Volume 6 of Graduate Studies in Mathematics (1995), Providence: American Mathematical Society, Providence
[21] Jimbo, M., A q-difference analogue of \({U}(\frak g)U\)(g) and the Yang-Baxter equation, Lett. Math. Phys., 10, 63-69 (1985) · Zbl 0587.17004 · doi:10.1007/BF00704588
[22] Jimbo, M., A q-analogue of \({U}(\frak{gl}({N}+ 1))U\)(gl(N + 1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., 11, 247-252 (1986) · Zbl 0602.17005 · doi:10.1007/BF00400222
[23] Klimyk, A.; Schmüdgen, K., Quantum Groups and Their Representations. Texts and Monographs in Physics (1997), Berlin: Springer, Berlin · Zbl 0891.17010 · doi:10.1007/978-3-642-60896-4
[24] König, S.; Xi, C., Affine cellular algebras, Adv. Math., 229, 139-182 (2012) · Zbl 1268.20008 · doi:10.1016/j.aim.2011.08.010
[25] Koo, W.; Saleur, H., Representations of the Virasoro algebra from lattice models, Nucl. Phys. B, 426, 3, 459-504 (1994) · Zbl 1049.82509 · doi:10.1016/0550-3213(94)90018-3
[26] Lentner, S., The unrolled quantum group inside Lusztig’s quantum group of divided powers, Lett. Math. Phys., 109, 7, 1665-1682 (2019) · Zbl 1447.16029 · doi:10.1007/s11005-019-01185-9
[27] Lusztig, G.: Introduction to Quantum Groups. Springer Science & Business Media (2010) · Zbl 1246.17018
[28] Martin, P., On Schur-Weyl duality, An Hecke algebras and quantum sl(N) on \(\otimes^{n + 1}\mathbb{C}^N \) ⊗n + 1ℂN, Int. J. Modern Phys., 07, 645-673 (1992) · Zbl 0925.17013 · doi:10.1142/S0217751X92003975
[29] Martin, P.; Saleur, H., On an algebraic approach to higher dimensional statistical mechanics, Comm. Math. Phys., 158, 1555-190 (1993) · Zbl 0784.05056 · doi:10.1007/BF02097236
[30] Martin, P.; Saleur, H., The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys., 30, 3, 189-206 (1994) · Zbl 0799.16005 · doi:10.1007/BF00805852
[31] Morin-Duchesne, A.; Rasmussen, J.; Ridout, D., Boundary algebras and Kac modules for logarithmic minimal models, Nucl. Phys. B, 899, 677-769 (2015) · Zbl 1331.81262 · doi:10.1016/j.nuclphysb.2015.08.017
[32] Morin-Duchesne, A.; Saint-Aubin, Y., A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra, J. Phys. A, 46, 285207 (2013) · Zbl 1285.82018 · doi:10.1088/1751-8113/46/28/285207
[33] Morin-Duchesne, A.; Saint-Aubin, Y., Jordan cells of periodic loop models, J. Phys. A, 46, 494013 (2013) · Zbl 1283.81112 · doi:10.1088/1751-8113/46/49/494013
[34] Pasquier, V.; Saleur, H., Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B, 330, 523-553 (1990) · doi:10.1016/0550-3213(90)90122-T
[35] Ridout, D.; Saint-Aubin, Y., Standard modules, induction and the structure of the Temperley-Lieb algebra, Adv. Theor. Math. Phys., 18, 5, 957-1041 (2014) · Zbl 1308.82015 · doi:10.4310/ATMP.2014.v18.n5.a1
[36] Stum, B.L., Quirós, A.: On quantum integers and rationals. In: Trends in Number Theory, Volume 649 of Contemporary Mathematics. arXiv:1310.8143, pp 107-131. American Mathematical Society, Providence (2015) · Zbl 1364.11053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.