×

Complete consistency for the weighted least squares estimators in semiparametric regression models. (English) Zbl 07753676

Summary: In this article, we consider the semiparametric regression model \(y_i=x_i\beta + g(t_i) + \sigma_ie_i\), \(i=1,2,\dots,n\), where \(\sigma_i^2=f(u_i)\), \((x_i,t_i,u_i)\) are known fixed design points, \( \beta\) is an unknown parameter to be estimated, \(g(\cdot)\) and \(f(\cdot)\) are unknown functions defined on a compact set. Assume that the random errors \(\{e_i,\ i\geq 1\}\) are zero mean widely orthant dependent (WOD, for short) random variables. Under some suitable conditions, we investigate the complete consistency for the least squares estimators (LSE, for short) and the weighted least squares estimators (WLSE, for short) of \(\beta\) and \(g(\cdot)\). In addition, a numerical simulation is given to study the numerical performance based on finite samples.

MSC:

62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI

References:

[1] Chebbab, I.; Benaissa, S., Complete convergence and maximal inequalities for product sums of WOD sequences, International Journal of Statistics and Economics, 20, 1, 1-8 (2019)
[2] Chen, H.; Shiau, J., Data-driven efficient estimators for a partially linear model, The Annals of Statistics, 22, 1, 211-37 (1994) · doi:10.1214/aos/1176325366
[3] Deng, X.; Wang, X. J.; Hu, S. H.; Hu, M., A general result on complete convergence for weighted sums of linear processes and its statistical applications, Statistics, 53, 4, 903-20 (2019) · Zbl 1418.62073 · doi:10.1080/02331888.2019.1615912
[4] Engle, R. F.; Granger, C. W. J.; Rice, J.; Weiss, A., Semiparametric estimates of the relation between weather and electricity sales, Journal of the American Statistical Association, 81, 394, 310-20 (1986) · doi:10.1080/01621459.1986.10478274
[5] Galton, F.; Dickson, J. D. H., Family likeness in stature, Proceedings of the Royal Society of London, 40, 242-245, 42-73 (1886) · JFM 18.0175.04
[6] Gao, J. T., Consistency of estimation in a semiparametric regression model (I), Journal of Systems Science and Mathematical Sciences, 12, 3, 269-72 (1992) · Zbl 0765.62043
[7] Gao, J. T.; Chen, X. R.; Zhao, L. C., Asymptotic normality of a class of estimators in partial linear models, Acta Mathematica Sinica, 37, 2, 256-68 (1994) · Zbl 0805.62040
[8] Heckman, N. E., Spline smoothing in a partly linear model, Journal of the Royal Statistical Society: Series B (Methodological), 48, 2, 244-8 (1986) · Zbl 0623.62030 · doi:10.1111/j.2517-6161.1986.tb01407.x
[9] Hsu, P. L.; Robbins, H., Complete convergence and the law of large numbers, Proceedings of the National Academy of Sciences of the United States of America, 33, 2, 25-31 (1947) · Zbl 0030.20101 · doi:10.1073/pnas.33.2.25
[10] Joag-Dev, K.; Proschan, F., Negative association of random variables with applications, The Annals of Statistics, 11, 1, 286-95 (1983) · Zbl 0508.62041 · doi:10.1214/aos/1176346079
[11] Lee, C. H.; Huang, C. Y.; DeFor, T. E.; Brunstein, C. G.; Weisdorf, D. J.; Luo, X., Semiparametric regression model for recurrent bacterial infections after hematopoietic stem cell transplantation, Statistica Sinica, 29, 3, 1489-509 (2019) · Zbl 1421.62150 · doi:10.5705/ss.202017.0397
[12] Li, X. Q.; Liu, X.; Yang, W. Z.; Hu, S. H., The inverse moment for widely orthant dependent random variables, Journal of Inequalities and Applications, 2016, 1, 161 (2016) · Zbl 1376.60045 · doi:10.1186/s13660-016-1099-8
[13] Liang, Z. W.; Wu, Q. Y., Theorems of complete convergence and complete integral convergence for END random variables under sub-linear expectations, Journal of Inequalities and Applications, 2019, 1, 114 (2019) · Zbl 1499.60088 · doi:10.1186/s13660-019-2064-0
[14] Liu, L., Precise large deviations for dependent random variables with heavy tails, Statistics & Probability Letters, 79, 9, 1290-8 (2009) · Zbl 1163.60012 · doi:10.1016/j.spl.2009.02.001
[15] Merrill, H. R.; Grunwald, S.; Bliznyuk, N., Semiparametric regression models for spatial prediction and uncertainty quantification of soil attributes, Stochastic Environmental Research and Risk Assessment, 31, 10, 2691-703 (2017) · doi:10.1007/s00477-016-1337-0
[16] Qiu, D. H.; Chen, P. Y., Complete and complete moment convergence for weighted sums of widely orthant dependent random variables, Acta Mathematica Sinica, English Series, 30, 9, 1539-48 (2014) · Zbl 1296.60075 · doi:10.1007/s10114-014-3483-y
[17] Rice, J., Convergence rates for partially splined models, Statistics & Probability Letters, 4, 4, 203-8 (1986) · Zbl 0628.62077 · doi:10.1016/0167-7152(86)90067-2
[18] Robinson, P. M., Root-\(n\)-consistent semiparametric regression, Econometrica, 56, 4, 931-54 (1988) · Zbl 0647.62100 · doi:10.2307/1912705
[19] Shen, A. T.; Zhang, S. Y., On complete consistency for the estimator of nonparametric regression model based on asymptotically almost negatively associated errors, Methodology and Computing in Applied Probability, 2020, 4, 1-23 (2020)
[20] Shen, A. T.; Zhang, Y.; Volodin, A., Applications of the Rosenthal-type inequality for negatively superadditive dependent random variables, Metrika, 78, 3, 295-311 (2015) · Zbl 1333.60022 · doi:10.1007/s00184-014-0503-y
[21] Shen, A. T.; Zhu, H. Y.; Wu, R. C.; Zhang, Y., Complete convergence for weighted sums of LNQD random variables, Stochastics, 87, 1, 160-9 (2015) · Zbl 1319.60038 · doi:10.1080/17442508.2014.931959
[22] Tao, X. R.; Wu, Y.; Xia, H.; Wang, X. J., Complete convergence of moving average process based on widely orthant dependent random variables, Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales. Serie A. Matematicas, 111, 3, 809-21 (2016) · Zbl 1378.60062
[23] Thuan, N. T.; Quang, N. V.; Nguyen, P. T., Complete convergence for arrays of rowwise independent random variables and fuzzy random variables in convex combination spaces, Fuzzy Sets and Systems, 250, 2014, 52-68 (2014) · Zbl 1334.60041 · doi:10.1016/j.fss.2014.04.012
[24] Wahba, G. (1990), SIAM: Society for Industrial and Applied Mathematics · Zbl 0813.62001 · doi:10.1137/1.9781611970128
[25] Wang, X. J.; Deng, X.; Hu, S. H., On consistency of the weighted least squares estimators in a semiparametric regression model, Metrika, 81, 7, 797-820 (2018) · Zbl 1401.62066 · doi:10.1007/s00184-018-0659-y
[26] Wang, X. J.; Li, X. Q.; Hu, S. H.; Wang, X. H., On complete convergence for an extended negatively dependent sequence, Communications in Statistics - Theory and Methods, 43, 14, 2923-37 (2014) · Zbl 1300.60038 · doi:10.1080/03610926.2012.690489
[27] Wang, K. Y.; Wang, Y. B.; Gao, Q. W., Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodology and Computing in Applied Probability, 15, 1, 109-24 (2013) · Zbl 1263.91027 · doi:10.1007/s11009-011-9226-y
[28] Wang, X. J.; Xu, C.; Hu, T. C.; Volodin, A.; Hu, S. H., On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models, Test, 23, 3, 607-29 (2014) · Zbl 1307.60024 · doi:10.1007/s11749-014-0365-7
[29] Wansoo, T. R.; Michel, T., The complete convergence of best fit decreasing, SIAM Journal on Computing, 18, 5, 909-18 (1989) · Zbl 0674.90078
[30] Wu, Q. Y., Probability limit theory for mixing sequences (2006), Bejing: Science Press of China, Bejing
[31] Xu, B.; Luo, Y. M.; Xu, R. J.; Chen, J. B., Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model, Energy, 236, 1, 121452 (2021) · doi:10.1016/j.energy.2021.121452
[32] Zhang, H. B.; Yuan, A.; Tan, M. T., Targeted design for adaptive clinical trials via semiparametric model, The International Journal of Biostatistics, 17, 2, 177-90 (2020) · doi:10.1515/ijb-2018-0100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.