×

Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers. (English) Zbl 07923886

Summary: A D-permutation is a permutation of \([2n]\) satisfying \(2k - 1 \leq \sigma(2k - 1)\) and \(2k \geq \sigma(2k)\) for all \(k\); they provide a combinatorial model for the Genocchi and median Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for some multivariate polynomials that enumerate D-permutations with respect to a very large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings.

MSC:

05A05 Permutations, words, matrices
05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
05A30 \(q\)-calculus and related topics
11B68 Bernoulli and Euler numbers and polynomials
30B70 Continued fractions; complex-analytic aspects

References:

[1] D. Barsky, Congruences pour les nombres de Genocchi de 2e espèce [extrait d’un travail en commun avec Dominique Dumont], Groupe d’étude d’Analyse ultramétrique, 8e année (1980/81), Exposé no. 34, 13 pp.
[2] Biane, P., Permutations suivant le type d’excédance et le nombre d’inversions et interprétation combinatoire d’une fraction continue de Heine, Eur. J. Comb., 14, 277-284, 1993 · Zbl 0784.05005
[3] Burstein, A.; Elizalde, S.; Mansour, T., Restricted Dumont permutations, Dyck paths, and noncrossing partitions, Discrete Math., 306, 2851-2869, 2006 · Zbl 1111.05002
[4] Burstein, A.; Jones, O., Enumeration of Dumont permutations avoiding certain four-letter patterns, Discrete Math. Theor. Comput. Sci., 22, 2, Article #7 pp., 2021 · Zbl 1487.05009
[5] Deb, B., Continued fractions using a Laguerre digraph interpretation of the Foata-Zeilberger bijection and its variants
[6] Deb, B.; Sokal, A. D., A remark on continued fractions for permutations and D-permutations with a weight −1 per cycle, Electron. J. Comb., 31, 2, Article #P2.14 pp., 2024 · Zbl 1539.11018
[7] Dumont, D., Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41, 305-318, 1974 · Zbl 0297.05004
[8] Dumont, D., Pics de cycle et dérivées partielles, Sémin. Lothar. Comb., 13, Article B13a pp., 1986
[9] Dumont, D., Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. Appl. Math., 16, 275-296, 1995 · Zbl 0834.05004
[10] Dumont, D.; Randrianarivony, A., Dérangements et nombres de Genocchi, Discrete Math., 132, 37-49, 1994 · Zbl 0807.05001
[11] Dumont, D.; Randrianarivony, A., Sur une extension des nombres de Genocchi, Eur. J. Comb., 16, 147-151, 1995 · Zbl 0823.05004
[12] Dumont, D.; Viennot, G., A combinatorial interpretation of the Seidel generation of Genocchi numbers, Ann. Discrete Math., 6, 77-87, 1980 · Zbl 0449.10011
[13] Dumont, D.; Zeng, J., Further results on the Euler and Genocchi numbers, Aequ. Math., 47, 31-42, 1994 · Zbl 0805.11024
[14] Ehrenborg, R.; Steingrímsson, E., Yet another triangle for the Genocchi numbers, Eur. J. Comb., 21, 593-600, 2000 · Zbl 0965.05009
[15] Elvey Price, A.; Sokal, A. D., Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, Electron. J. Comb., 27, 4, Article P4.6 pp., 2020 · Zbl 1450.05076
[16] Eneström, G., Die Schriften Eulers chronologisch nach den Jahren geordnet, in denen sie verfaßt worden sind, Jahresbericht der Deutschen Mathematiker-Vereinigung, 1913, Teubner: Teubner Leipzig
[17] Eu, S.-P.; Fu, T.-S.; Lai, H.-H.; Lo, Y.-H., Gamma-positivity for a refinement of median Genocchi numbers, Electron. J. Comb., 29, 2, Article P2.15 pp., 2022 · Zbl 1487.05011
[18] Euler, L., Methodis summandi superior ulterius promota, Chapter 7 of Institutiones Calculi Differentialis cum eius Usu, (Institutiones Calculi Differentialis cum eius Usu in Analysi Finitorum ac Doctrina Serierum, 1755, Academiae Imperialis Scientiarum Petropolitanae: Academiae Imperialis Scientiarum Petropolitanae Saint Petersburg), 479-514, English translation available at
[19] Euler, L., De seriebus divergentibus, (Novi Commentarii Academiae Scientiarum Petropolitanae, vol. 5, 1760), 205-237, reprinted in Opera Omnia, ser. 1, vol. 14, pp. 585-617. Latin original and English and German translations available at
[20] Euler, L., De transformatione seriei divergentis \(1 - m x + m(m + n) x^2 - m(m + n)(m + 2 n) x^3 + \text{etc.}\) in fractionem continuam, (Nova Acta Academiae Scientarum Imperialis Petropolitanae, vol. 2, 1788), 36-45, reprinted in Opera Omnia, ser. 1, vol. 16, pp. 34-46, Latin original and English and German translations available at
[21] Feigin, E., The median Genocchi numbers, q-analogues and continued fractions, Eur. J. Comb., 33, 1913-1918, 2012 · Zbl 1248.05007
[22] Flajolet, P., Combinatorial aspects of continued fractions, Discrete Math., 32, 125-161, 1980 · Zbl 0445.05014
[23] Foata, D.; Han, G.-N., Principes de combinatoire classique: Cours et exercices corrigés, 2008, Université Louis Pasteur, Strasbourg, Département de mathématique, Available on-line at
[24] Foata, D.; Schützenberger, M.-P., Nombres d’Euler et permutations alternantes, 1971, University of Florida, 71 pp., Available on-line at
[25] Foata, D.; Zeilberger, D., Denert’s permutation statistic is indeed Euler-Mahonian, Stud. Appl. Math., 83, 31-59, 1990 · Zbl 0738.05001
[26] Fusy, E.; Guitter, E., Comparing two statistical ensembles of quadrangulations: a continued fraction approach, Ann. Inst. Henri Poincaré D, 4, 125-176, 2017 · Zbl 1365.05062
[27] Genocchi, A., Intorno all’espressione generale de’ numeri bernulliani, (Annali di Scienze Mathematiche e Fisiche (Roma), vol. 3, 1852), 395-405
[28] Han, G.-N.; Liu, J.-Y., Combinatorial proofs of some properties of tangent and Genocchi numbers, Eur. J. Comb., 71, 99-110, 2018 · Zbl 1387.05046
[29] Han, G.-N.; Zeng, J., q-polynômes de Gandhi et statistique de Denert, Discrete Math., 205, 119-143, 1999 · Zbl 0944.05008
[30] Han, G.-N.; Zeng, J., On a q-sequence that generalizes the median Genocchi numbers, Ann. Sci. Math. Qué., 23, 63-72, 1999 · Zbl 1100.11501
[31] Josuat-Vergès, M., A q-analog of Schläfli and Gould identities on Stirling numbers, Ramanujan J., 46, 483-507, 2018 · Zbl 1391.05050
[32] Knuth, D. E., The Art of Computer Programming, vol. 3, 1998, Addison-Wesley: Addison-Wesley Reading MA · Zbl 0895.65001
[33] Kuznetsov, A. G.; Pak, I. M.; Postnikov, A. E., Increasing trees and alternating permutations, Usp. Mat. Nauk. Usp. Mat. Nauk, Russ. Math. Surv., 49, 6, 79-114, 1994 · Zbl 0842.05025
[34] Lazar, A. L., The homogenized Linial arrangement and its consequences in enumerative combinatorics, August 2020, University of Miami, Ph.D. thesis
[35] Lazar, A.; Wachs, M. L., The homogenized Linial arrangement and Genocchi numbers, Comb. Theory, 2, 1, Article 2 pp., 2022 · Zbl 1502.52019
[36] Lucas, É., Sur les théorèmes de Binet et de Staudt concernant les nombres de Bernoulli, (Nouvelles Annales de Mathématiques (2^e série), vol. 16, 1877), 157-160
[37] (Olver, F. W.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions, 2010, U.S. Department of Commerce: U.S. Department of Commerce Washington DC), Available on-line at · Zbl 1198.00002
[38] The On-Line Encyclopedia of Integer Sequences, published electronically at · Zbl 1494.68308
[39] Oste, R.; Van der Jeugt, J., Motzkin paths, Motzkin polynomials and recurrence relations, Electron. J. Comb., 22, 2, Article #P2.8 pp., 2015 · Zbl 1310.05013
[40] Pan, Q.; Zeng, J., Cycles of even-odd drop permutations and continued fractions of Genocchi numbers, J. Comb. Theory, Ser. A, 199, Article 105778 pp., 2023 · Zbl 1517.05012
[41] Pétréolle, M.; Sokal, A. D.; Zhu, B.-X., Lattice paths and branched continued fractions: an infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficientwise Hankel-total positivity, Mem. Am. Math. Soc., 291, 1450, 2023, 154 pp. · Zbl 1528.05001
[42] Randrianarivony, A., Fractions continues, q-nombres de Catalan et q-polynômes de Genocchi, Eur. J. Comb., 18, 75-92, 1997 · Zbl 0872.05001
[43] Randrianarivony, A.; Zeng, J., Une famille de polynômes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math., 17, 1-26, 1996 · Zbl 0874.05005
[44] Randrianarivony, A.; Zeng, J., Some equidistributed statistics on Genocchi permutations, Electron. J. Comb., 3, 2, Article #22 pp., 1996, Research Paper · Zbl 0857.05002
[45] Rogers, L. J., On the representation of certain asymptotic series as convergent continued fractions, Proc. Lond. Math. Soc., 2, 4, 72-89, 1907 · JFM 37.0255.02
[46] Sokal, A. D., The Euler and Springer numbers as moment sequences, Expo. Math., 38, 1-26, 2020 · Zbl 1445.05011
[47] A.D. Sokal, Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials, in preparation.
[48] Sokal, A. D.; Zeng, J., Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions, Adv. Appl. Math., 138, Article 102341 pp., 2022 · Zbl 1487.05032
[49] Stanley, R. P., A survey of alternating permutations, (Brualdi, R. A.; Hedayat, S.; Kharaghani, H.; Khosrovshahi, G. B.; Shahriari, S., Combinatorics and Graphs. Combinatorics and Graphs, Contemporary Mathematics, vol. 531, 2010, American Mathematical Society: American Mathematical Society Providence, RI), 165-196 · Zbl 1231.05288
[50] Stieltjes, T. J., Sur la réduction en fraction continue d’une série procédant selon les puissances descendantes d’une variable, Ann. Fac. Sci. Toulouse, 3, H1-H17, 1889 · JFM 21.0187.01
[51] Viennot, G., Interprétations combinatoires des nombres d’Euler et de Genocchi, (Séminaire de Théorie des Nombres (Bordeaux), Année 1980-81, exposé no. 11, 1981) · Zbl 0505.05006
[52] Viennot, G., Une théorie combinatoire des polynômes orthogonaux généraux, Notes de conférences données à l’Université du Québec à Montréal, septembre-octobre 1983, Available on-line at
[53] Zeng, J., Sur quelques propriétés de symétrie des nombres de Genocchi, Discrete Math., 153, 319-333, 1996 · Zbl 0870.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.