×

Spectral geometry of nuts and bolts. (English) Zbl 1507.58013

Summary: We study the spectrum of Laplace operators on a one-parameter family of gravitational instantons of bi-axial Bianchi IX type coupled to an abelian connection with self-dual curvature. The family of geometries includes the Taub-NUT (TN), Taub-bolt and Euclidean Schwarzschild geometries and interpolates between them. The interpolating geometries have conical singularities along a submanifold of co-dimension two, but we prove that the associated Laplace operators have natural selfadjoint extensions and study their spectra. In particular, we determine the essential spectrum and prove that its complement, the discrete spectrum, is infinite. We compute some of these eigenvalues numerically and compare the numerical results with an analytical approximation derived from the asymptotic TN form of each of the geometries in our family.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds

References:

[1] Atiyah, M.; Hitchin, N., The Geometry and Dynamics of Magnetic Monopoles (1988), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0671.53001
[2] Gibbons, G. W.; Manton, N. S., Classical and quantum dynamics of BPS monopoles, Nucl. Phys. B, 274, 183-224 (1986) · doi:10.1016/0550-3213(86)90624-3
[3] Hawking, S. W., Gravitational instantons, Phys. Lett. A, 60, 81-83 (1977) · doi:10.1016/0375-9601(77)90386-3
[4] Atiyah, M.; LeBrun, C., Curvature, cones and characteristic numbers, Math. Proc. Camb. Phil. Soc., 155, 13-37 (2013) · Zbl 1273.53041 · doi:10.1017/s0305004113000169
[5] Gibbons, G. W.; Hawking, S. W., Classification of gravitational instanton symmetries, Commun. Math. Phys., 66, 291-310 (1979) · doi:10.1007/bf01197189
[6] Jante, R.; Schroers, B. J., Taub-NUT dynamics with a magnetic field, J. Geom. Phys., 104, 305-328 (2016) · Zbl 1337.83013 · doi:10.1016/j.geomphys.2016.02.016
[7] Jante, R.; Schroers, B. J., Spectral properties of Schwarzschild instantons, Class. Quantum Grav., 33 (2016) · Zbl 1349.83048 · doi:10.1088/0264-9381/33/20/205008
[8] Hitchin, N. J., A new family of Einstein metrics, Manifolds and Geometry (Pisa, 1993), 58, 190-222 (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0858.53038
[9] Abreu, M., Kähler metrics on toric orbifolds, J. Differ. Geom., 58, 151-187 (2001) · Zbl 1035.53055 · doi:10.4310/jdg/1090348285
[10] Kay, B. S.; Studer, U. M., Boundary conditions for quantum mechanics on cones and fields around cosmic strings, Commun. Math. Phys., 139, 103-139 (1991) · Zbl 0727.53087 · doi:10.1007/bf02102731
[11] Dancer, A. S.; Strachan, I. A B., Kähler-Einstein metrics with SU(2) action, Math. Proc. Camb. Phil. Soc., 115, 513 (1994) · Zbl 0811.53046 · doi:10.1017/s0305004100072273
[12] Gibbons, G. W.; Pope, C. N., The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Commun. Math. Phys., 66, 267-290 (1979) · doi:10.1007/bf01197188
[13] Akbar, M. M.; D’Eath, P. D., CP^2 and CP^1 sigma models in supergravity: Bianchi type IX instantons and cosmologies, Class. Quantum Grav., 21, 2407-2420 (2004) · Zbl 1049.83033 · doi:10.1088/0264-9381/21/9/014
[14] Page, D. N., Taub-NUT instanton with an horizon, Phys. Lett. B, 78, 249 (1978) · doi:10.1016/0370-2693(78)90016-3
[15] Jante, R.; Schroers, B. J., Dirac operators on the Taub-NUT space, monopoles and SU(2) representations, J. High Energy Phys. (2014) · doi:10.1007/jhep01(2014)114
[16] Pope, C. N., Axial-vector anomalies and the index theorem in charged Schwarzschild and Taub-NUT spaces, Nucl. Phys. B, 141, 432-444 (1978) · doi:10.1016/0550-3213(78)90038-x
[17] Franchetti, G., Harmonic forms and spinors on the Taub-bolt space, J. Geom. Phys., 141, 11-28 (2019) · Zbl 1416.53046 · doi:10.1016/j.geomphys.2019.03.005
[18] Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K., Quantum Theory of Angular Momentum (1988), Singapore: World Scientific, Singapore
[19] Boulton, L.; Schroers, B. J.; Smedley-Williams, K., Quantum bound states in Yang-Mills-Higgs theory, Commun. Math. Phys., 363, 261-287 (2018) · Zbl 1400.81195 · doi:10.1007/s00220-018-3236-3
[20] Bruneau, L.; Dereziński, J.; Georgescu, V., Homogeneous Schrödinger operators on half-line, Ann. Henri Poincaré, 12, 547-590 (2011) · Zbl 1226.47049 · doi:10.1007/s00023-011-0078-3
[21] Trefethen, L.; Birkisson, Á.; Driskoll, T., Exploring ODEs (2018), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1402.34002
[22] Davies, E. B., Spectral Theory and Differential Operators (1996), Cambridge: Cambridge University Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.