×

Scalar bremsstrahlung in gravity-mediated ultrarelativistic collisions. (English) Zbl 1306.81309

Summary: Classical bremsstrahlung of a massless scalar field {\(\Phi\)} is studied in gravity mediated ultra-relativistic collisions with impact parameter \(b\) of two massive point particles in the presence of \(d\) non-compact or toroidal extra dimensions. The spectral and angular distribution of the scalar radiation are analyzed, while the total emitted {\(\Phi\)}-energy is found to be strongly enhanced by a \(d\)-dependent power of the Lorentz factor \(\gamma\). The direct radiation amplitude from the accelerated particles is shown to interfere destructively (in the first two leading ultra-relativistic orders) with the one due to the {\(\Phi\)}-{\(\Phi\)}-\(graviton\) interaction in the frequency regime \( \gamma /b \lesssim \omega \lesssim {\gamma^2}/b \) in all dimensions.

MSC:

81U05 \(2\)-body potential quantum scattering theory
83E15 Kaluza-Klein and other higher-dimensional theories
83C57 Black holes

References:

[1] I. Antoniadis, C. Bachas, D.C. Lewellen and T. Tomaras, On supersymmetry breaking in superstrings, Phys. Lett.B 207 (1988) 441 [INSPIRE].
[2] I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett.B 246 (1990) 377 [INSPIRE].
[3] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE]. · Zbl 1355.81103
[4] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett.B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
[5] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev.D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].
[6] G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys.B 544 (1999) 3 [hep-ph/9811291] [INSPIRE]. · doi:10.1016/S0550-3213(99)00044-9
[7] T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev.D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].
[8] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[9] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE]. · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[10] P.C. Argyres, S. Dimopoulos and J. March-Russell, Black holes and submillimeter dimensions, Phys. Lett.B 441 (1998) 96 [hep-th/9808138] [INSPIRE].
[11] T. Banks and W. Fischler, A model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].
[12] S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev.D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].
[13] S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett.87 (2001) 161602 [hep-ph/0106295] [INSPIRE]. · doi:10.1103/PhysRevLett.87.161602
[14] D. Ida and K.-I. Nakao, Isoperimetric inequality for higher dimensional black holes, Phys. Rev.D 66 (2002) 064026 [gr-qc/0204082] [INSPIRE].
[15] C. Barrabes, V.P. Frolov and E. Lesigne, Geometric inequalities and trapped surfaces in higher dimensional space-times, Phys. Rev.D 69 (2004) 101501 [gr-qc/0402081] [INSPIRE]. · Zbl 1405.83053
[16] C.-M. Yoo, K.-I. Nakao and D. Ida, Hoop conjecture in five-dimensions: violation of cosmic censorship, Phys. Rev.D 71 (2005) 104014 [gr-qc/0503008] [INSPIRE].
[17] R. Penrose, unpublished (1974).
[18] P. D’Eath, High speed black hole encounters and gravitational radiation, Phys. Rev.D 18 (1978) 990 [INSPIRE].
[19] P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 1. Perturbation treatment of the axisymmetric speed of light collision, Phys. Rev.D 46 (1992) 658 [INSPIRE].
[20] P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 2. Reduction to two independent variables and calculation of the second order news function, Phys. Rev.D 46 (1992) 675 [INSPIRE].
[21] P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 3. Results and conclusions, Phys. Rev.D 46 (1992) 694 [INSPIRE].
[22] P. D’Eath, Black holes: gravitational interactions, Oxford mathematical monographs, Clarendon, Oxford U.K. (1996). · Zbl 0874.53057
[23] D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev.D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].
[24] H. Yoshino and Y. Nambu, Black hole formation in the grazing collision of high-energy particles, Phys. Rev.D 67 (2003) 024009 [gr-qc/0209003] [INSPIRE].
[25] H. Yoshino and V.S. Rychkov, Improved analysis of black hole formation in high-energy particle collisions, Phys. Rev.D 71 (2005) 104028 [Erratum ibid.D 77 (2008) 089905] [hep-th/0503171] [INSPIRE].
[26] H. Yoshino and R.B. Mann, Black hole formation in the head-on collision of ultrarelativistic charges, Phys. Rev.D 74 (2006) 044003 [gr-qc/0605131] [INSPIRE].
[27] S.B. Giddings, Beyond the Planck scale, arXiv:0910.3140 [INSPIRE].
[28] I. Aref’eva, Catalysis of black holes/wormholes formation in high energy collisions, Theor. Math. Phys.161 (2009) 1647 [arXiv:0912.5481] [INSPIRE]. · Zbl 1186.83044 · doi:10.1007/s11232-009-0152-x
[29] M. Bleicher and P. Nicolini, Large extra dimensions and small black holes at the LHC, J. Phys. Conf. Ser.237 (2010) 012008 [arXiv:1001.2211] [INSPIRE]. · doi:10.1088/1742-6596/237/1/012008
[30] M. Bleicher and P. Nicolini, Large extra dimensions and small black holes at the LHC, J. Phys. Conf. Ser.237 (2010) 012008 [arXiv:1001.2211] [INSPIRE]. · doi:10.1088/1742-6596/237/1/012008
[31] S.B. Giddings, M. Schmidt-Sommerfeld and J.R. Andersen, High energy scattering in gravity and supergravity, Phys. Rev.D 82 (2010) 104022 [arXiv:1005.5408] [INSPIRE].
[32] P. Aichelburg and R. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav.2 (1971) 303 [INSPIRE]. · doi:10.1007/BF00758149
[33] T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys.B 253 (1985) 173 [INSPIRE]. · doi:10.1016/0550-3213(85)90525-5
[34] C. Herdeiro, M.O. Sampaio and C. Rebelo, Radiation from a D-dimensional collision of shock waves: first order perturbation theory, JHEP07 (2011) 121 [arXiv:1105.2298] [INSPIRE]. · Zbl 1298.83036 · doi:10.1007/JHEP07(2011)121
[35] S.B. Giddings and V.S. Rychkov, Black holes from colliding wavepackets, Phys. Rev.D 70 (2004) 104026 [hep-th/0409131] [INSPIRE].
[36] P. Meade and L. Randall, Black holes and quantum gravity at the LHC, JHEP05 (2008) 003 [arXiv:0708.3017] [INSPIRE]. · doi:10.1088/1126-6708/2008/05/003
[37] B.P. Kosyakov, Exact solutions of classical electrodynamics and the Yang-Mills-Wong theory in even-dimensional space-time, Theor. Math. Phys.119 (1999) 493 [hep-th/0207217] [INSPIRE]. · Zbl 0951.81019 · doi:10.1007/BF02557347
[38] D. Gal’tsov, Radiation reaction in various dimensions, Phys. Rev.D 66 (2002) 025016 [hep-th/0112110] [INSPIRE].
[39] P. Kazinski, S. Lyakhovich and A. Sharapov, Radiation reaction and renormalization in classical electrodynamics of point particle in any dimension, Phys. Rev.D 66 (2002) 025017 [hep-th/0201046] [INSPIRE].
[40] D.V. Gal’tsov and P.A. Spirin, Radiation reaction in curved even-dimensional spacetime, Grav. Cosmol.13 (2007) 241 [arXiv:1012.3085] [INSPIRE]. · Zbl 1158.83013
[41] D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at Planckian energies, Nucl. Phys.B 403 (1993) 707 [INSPIRE]. · doi:10.1016/0550-3213(93)90367-X
[42] E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP06 (2002) 057 [gr-qc/0203093] [INSPIRE]. · doi:10.1088/1126-6708/2002/06/057
[43] D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational collapse, JHEP02 (2008) 049 [arXiv:0712.1209] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/049
[44] G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse, JHEP09 (2008) 023 [arXiv:0804.3321] [INSPIRE]. · Zbl 1245.83017 · doi:10.1088/1126-6708/2008/09/023
[45] G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse. II. A momentum space analysis, JHEP09 (2008) 024 [arXiv:0805.2973] [INSPIRE]. · Zbl 1245.83016 · doi:10.1088/1126-6708/2008/09/024
[46] M. Ciafaloni and D. Colferai, S-matrix and quantum tunneling in gravitational collapse, JHEP11 (2008) 047 [arXiv:0807.2117] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/047
[47] V. Cardoso, O.J. Dias and J.P. Lemos, Gravitational radiation in D-dimensional space-times, Phys. Rev.D 67 (2003) 064026 [hep-th/0212168] [INSPIRE].
[48] V. Cardoso, J.P. Lemos and S. Yoshida, Electromagnetic radiation from collisions at almost the speed of light: an extremely relativistic charged particle falling into a Schwarzschild black hole, Phys. Rev.D 68 (2003) 084011 [gr-qc/0307104] [INSPIRE].
[49] E. Berti, M. Cavaglià and L. Gualtieri, Gravitational energy loss in high-energy particle collisions: ultrarelativistic plunge into a multidimensional black hole, Phys. Rev.D 69 (2004) 124011 [hep-th/0309203] [INSPIRE].
[50] B. Koch and M. Bleicher, Gravitational radiation from elastic particle scattering in models with extra dimensions, JETP Lett.87 (2008) 67 [hep-th/0512353] [INSPIRE]. · doi:10.1134/S002136400802001X
[51] V. Cardoso, M. Cavaglia and J.-Q. Guo, Gravitational Larmor formula in higher dimensions, Phys. Rev.D 75 (2007) 084020 [hep-th/0702138] [INSPIRE].
[52] H. Yoshino, T. Shiromizu and M. Shibata, The close limit analysis for head-on collision of two black holes in higher dimensions: Brill-Lindquist initial data, Phys. Rev.D 72 (2005) 084020 [gr-qc/0508063] [INSPIRE].
[53] H. Yoshino, T. Shiromizu and M. Shibata, Close-slow analysis for head-on collision of two black holes in higher dimensions: Bowen-York initial data, Phys. Rev.D 74 (2006) 124022 [gr-qc/0610110] [INSPIRE].
[54] M.W. Choptuik and F. Pretorius, Ultra relativistic particle collisions, Phys. Rev. Lett.104 (2010) 111101 [arXiv:0908.1780] [INSPIRE]. · doi:10.1103/PhysRevLett.104.111101
[55] H. Witek et al., Numerical relativity for D dimensional space-times: head-on collisions of black holes and gravitational wave extraction, Phys. Rev.D 82 (2010) 104014 [arXiv:1006.3081] [INSPIRE].
[56] A. Mironov and A. Morozov, Is strong gravitational radiation predicted by TeV-gravity?, Pisma Zh. Eksp. Teor. Fiz.85 (2007) 9 [JETP Lett.85 (2007) 6] [hep-ph/0612074] [INSPIRE].
[57] A. Mironov and A. Morozov, Radiation beyond four space-time dimensions, Theor. Math. Phys.156 (2008) 1209 [hep-th/0703097] [INSPIRE]. · Zbl 1151.81377 · doi:10.1007/s11232-008-0090-z
[58] D.V. Gal’tsov, G. Kofinas, P. Spirin and T.N. Tomaras, Classical ultrarelativistic bremsstrahlung in extra dimensions, JHEP05 (2010) 055 [arXiv:1003.2982] [INSPIRE]. · Zbl 1287.83044 · doi:10.1007/JHEP05(2010)055
[59] D.V. Gal’tsov, G. Kofinas, P. Spirin and T.N. Tomaras, Transplanckian bremsstrahlung and black hole production, Phys. Lett.B 683 (2010) 331 [arXiv:0908.0675] [INSPIRE].
[60] D.V. Gal’tsov, G. Kofinas, P. Spirin and T.N. Tomaras, Classical ultra-relativistic scattering in ADD, JHEP05 (2009) 074 [arXiv:0903.3019] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/074
[61] G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett.B 198 (1987) 61 [INSPIRE].
[62] B. Bertotti, On gravitational motion, Nuovo Cim.4 (1956) 898. · Zbl 0071.22105 · doi:10.1007/BF02746175
[63] Goldberg, JN, No article title, Bull. Amer. Phys. Soc., 2, 232 (1957)
[64] P. Havas, Radiation damping in general relativity, Phys. Rev.108 (1957) 1352. · doi:10.1103/PhysRev.108.1351
[65] A.E. Wehrle, Multiwavelength observations of GeV blazars, Astropart. Phys.11 (1999) 169 [INSPIRE]. · doi:10.1016/S0927-6505(99)00044-4
[66] Havas, P., No article title, Bull. Amer. Phys. Soc., 6, 346 (1961)
[67] J.N. Goldberg, The equations of motion, in Gravitation: an introduction to the current reseach, New York U.S.A. (1962), pg. 102.
[68] P. Havas and J.N. Goldberg, Lorentz-invariant equations of motion of point masses in the general theory of relativity, Phys. Rev.B 128 (1962) 495 [INSPIRE]. · Zbl 0111.42104
[69] K.S. Thorne and S.J. Kovacs, The generation of gravitational waves, I: weak-field sources, Astrophys. J.200 (1975) 245. · doi:10.1086/153783
[70] R. Crowley and K. Thorne, The generation of gravitational waves. 2. The postlinear formalism revisited, Astrophys. J.215 (1977) 624 [INSPIRE]. · doi:10.1086/155397
[71] S. Kovacs and K. Thorne, The generation of gravitational waves. 3. Derivation of bremsstrahlung formulas, Astrophys. J.217 (1977) 252 [INSPIRE]. · doi:10.1086/155576
[72] S. Kovacs and K. Thorne, The generation of gravitational waves. 4. Bremsstrahlung, Astrophys. J.224 (1978) 62 [INSPIRE]. · doi:10.1086/156350
[73] D.V. Gal’tsov and Y.V. Grats, Gravitational radiation under collision of relativistic bodies (in Russian), in Modern problems of theoretical physics, Moscow State Univ. Publ., Moscow Russia (1976), pg. 258.
[74] D.V. Gal’tsov, Y.V. Grats and A.A. Matyukhin, Problem of bremsstrahlung in the case of gravitational interaction, Sov. Phys. J.23 (1980) 389. · doi:10.1007/BF00891627
[75] G.F. Giudice, R. Rattazzi and J.D. Wells, Transplanckian collisions at the LHC and beyond, Nucl. Phys.B 630 (2002) 293 [hep-ph/0112161] [INSPIRE]. · Zbl 0994.83019 · doi:10.1016/S0550-3213(02)00142-6
[76] P. Lodone and V.S. Rychkov, Radiation problem in transplanckian scattering, JHEP12 (2009) 036 [arXiv:0909.3519] [INSPIRE]. · doi:10.1088/1126-6708/2009/12/036
[77] I. Khriplovich and E. Shuryak, Radiation emitted by an ultrarelativistic particle in a gravitational field, Zh. Eksp. Teor. Fiz.65 (1973) 2137 [INSPIRE].
[78] D. Gal’tsov and A. Matyukhin, Radiation from ultrarelativistic particles in strong gravitational fields (in Russian), Yad. Fiz.45 (1987) 894 [INSPIRE].
[79] R. Matzner and Y. Nutku, On the method of virtual quanta and gravitational radiation, Proc. Roy. Soc. Lond.336 (1974) 285 [INSPIRE]. · doi:10.1098/rspa.1974.0020
[80] B. Barker, S. Gupta and J. Kaskas, Graviton bremsstrahlung and infrared divergence, Phys. Rev.182 (1969) 1391 [INSPIRE]. · doi:10.1103/PhysRev.182.1391
[81] B. Barker and S. Gupta, High-energy graviton bremsstrahlung, Phys. Rev.D 9 (1974) 334 [INSPIRE].
[82] B. Barker and R. O’Connell, Gravitational two-body problem with arbitrary masses, spins and quadrupole moments, Phys. Rev.D 12 (1975) 329 [INSPIRE].
[83] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, Academic Press, New York U.S.A. (1965).
[84] A. Kehagias and K. Sfetsos, Deviations from the 1/R2Newton law due to extra dimensions, Phys. Lett.B 472 (2000) 39 [hep-ph/9905417] [INSPIRE]. · Zbl 0959.81122
[85] E. Floratos and G. Leontaris, Low scale unification, Newton’s law and extra dimensions, Phys. Lett.B 465 (1999) 95 [hep-ph/9906238] [INSPIRE]. · Zbl 0987.81612
[86] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and series, volume 1, elementary functions, Gordon & Breach Sci. Publ., New York U.S.A. (1986). · Zbl 0733.00004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.