×

Bayesian estimation of NIG models via Markov chain Monte Carlo methods. (English) Zbl 1063.91035

This paper deals with the estimation of normal inverse Gaussian distribution parameters from the Bayesian approach using Markov chain Monte Carlo methods. The normal inverse Gaussian distribution has the probability density function \[ f(y;\alpha,\beta,\mu,\delta)= {\alpha\over\pi}\exp(\delta\gamma+\beta(y-\mu))q(y)^{-1/2} K_{1}(\delta\alpha q(y)^{1/2}), \] where \(\alpha=\sqrt{\gamma^2+\beta^2}\), \(q(y)=1+[(y-\mu)/\delta]^2\), and \(K_{r}(x)\) denotes the modified Bessel function of the third kind of order \(r\). The authors use the data augmentation offered by the mixture derivation of the normal inverse Gaussian distribution which leads to Gibbs sampling scheme. Different prior distributions are examined, starting with a parsimonious conjugate prior in the augmented context. The basic normal inverse Gaussian model is extended to include covariates. Such a model is quite general and, among others, allows modelling various types of heteroscedastic and autoregressive processes. The authors apply the proposed Markov chain Monte Carlo scheme to a data set concerning the monthly nominal arithmetic returns of the FT-Actuaries All-Share Index for the UK.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
Full Text: DOI

References:

[1] Mandelbrot, The Random Character of Stock Market Prices (1964)
[2] Samorodnitsky, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance (1994) · Zbl 0925.60027
[3] A Users Guide to Heavy Tails (1998)
[4] Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scandinavian Journal of Statistics 24 pp 1– (1997) · Zbl 0934.62109 · doi:10.1111/1467-9469.t01-1-00045
[5] Barndorff-Nielsen, Normal variance-mean mixtures and z-distributions, International Statistical Review 50 pp 145– (1983) · Zbl 0497.62019
[6] Korsholm, The semiparametric normal variance-mean mixture model, Scandinavian Journal of Statistics 27 pp 227– (2000) · Zbl 0955.62032 · doi:10.1111/1467-9469.00187
[7] Rydberg, Realistic statistical modelling of financial data, International Statistical Review 68 pp 233– (2000) · Zbl 1107.91365
[8] Lillestöl, Risk analysis and the NIG distribution, Journal of Risk 2 pp 41– (2000) · doi:10.21314/JOR.2000.031
[9] Andersson, On the normal inverse Gaussian stochastic volatility model, Journal of Business and Economics Statistics 19 pp 44– (2001) · doi:10.1198/07350010152472607
[10] Jensen, The NIG-S and ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroscedastic volatility model, The Econometrics Journal 4 pp 319– (2001) · Zbl 1048.91065 · doi:10.1111/1368-423X.00070
[11] Venter, Risk estimation using the normal inverse Gaussian distribution, The Journal of Risk 4 pp 1– (2002) · doi:10.21314/JOR.2002.059
[12] Eberlein, Mathematical Finance-Bachelier Congress 2000 pp 245– (2002)
[13] Öigård TA The normal inverse Gaussian and the stable distributions as models of heavy tailed data 2001
[14] Karlis, An EM type algorithm for maximum likelihood estimation for the normal inverse Gaussian distribution, Statistics and Probability Letters 57 pp 43– (2002) · Zbl 0996.62015 · doi:10.1016/S0167-7152(02)00040-8
[15] Seshadri, The Inverse Gaussian Distribution (1993)
[16] Barndorff-Nielsen, Apparent scaling, Finance and Stochastics 5 pp 103– (2001) · Zbl 0976.60047 · doi:10.1007/s007800000020
[17] Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of a particle size, Proceedings of the Royal Society of London A 353 pp 401– (1977)
[18] Prause, FDM Preprint 48 (1997)
[19] Lillestöl J Bayesian estimation of NIG-parameters by Markov chain Monte Carlo methods 2001
[20] Jorgensen, The Generalized Inverse-Gaussian Distribution (1982)
[21] Athreya, Another conjugate family for the normal distribution, Statistics and Probability Letters 4 pp 61– (1986) · Zbl 0585.62029 · doi:10.1016/0167-7152(86)90018-0
[22] Carlin, Bayes and Empirical Bayes Methods for Data Analysis (1996) · Zbl 0871.62012
[23] Betró, On Bayesian inference for the inverse Gaussian distribution, Statistics and Probability Letters 11 pp 219– (1991) · Zbl 0712.62026 · doi:10.1016/0167-7152(91)90146-I
[24] Devroye, Non-Uniform Random Variate Generation (1986)
[25] Dagpunar, Principles of Random Variate Generation (1988) · Zbl 0676.62002
[26] Damien P Walker S Sampling nonstandard distributions via the Gibbs sampler 1997
[27] Achcar, Inverse Gaussian distribution: a Bayesian approach, Revisita Brasileira de Probabilidade e Estadistica 5 pp 81– (1991) · Zbl 0741.62030
[28] Banerjee, Bayesian results for the inverse Gaussian distribution with an application, Technometrics 21 pp 247– (1979) · Zbl 0418.62025
[29] Robert, Simulation of truncated normal variates, Statistics and Computing 5 pp 121– (1995) · doi:10.1007/BF00143942
[30] Mills, The Econometric Modelling of Financial Time Series (1999) · Zbl 1145.62402
[31] Karlis, Proceedings of the 17th International Workshop on Statistical Modelling pp 375– (2002)
[32] Best, CODA Manual version 0.30 (1995)
[33] Fernández, On Bayesian modeling of fat tails and skewness, Journal of the American Statistical Association 93 pp 359– (1998) · Zbl 0910.62024
[34] Tsionas, Bayesian inference in the noncentral student-t model, Journal of Computational and Graphical Statistics 11 pp 208– (2002) · doi:10.1198/106186002317375695
[35] Eberlein, Hyperbolic distributions in finance, Bernoulli 1 pp 281– (1995) · Zbl 0836.62107
[36] Blaesild, Research Report No. 248 (1992)
[37] Dean, A mixed Poisson-inverse Gaussian regression model, Canadian Journal of Statistics 17 pp 171– (1989) · Zbl 0679.62051
[38] Fernández, Bayesian regression analysis with scale mixtures of Normals, Econometric Theory 16 pp 80– (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.