×

Analyzing model robustness via a distortion of the stochastic root: a Dirichlet prior approach. (English) Zbl 1347.60143

Summary: It is standard in quantitative risk management to model a random vector \(\mathbf{X}:=\{X_{t_k}\}_{k=1,\ldots,d}\) of consecutive log-returns to ultimately analyze the probability law of the accumulated return \(X_{t_1}+\cdots +X_{t_d}\). By the Markov regression representation (see [L. Rüschendorf and V. de Valk, Stochastic Processes Appl. 46, No. 2, 183–198 (1993; Zbl 0779.60058)]), any stochastic model for \(\mathbf{X}\) can be represented as \(X_{t_k}=f_k(X_{t_1},\ldots,X_{t_{k-1}},U_k)\), \(k=1,\ldots,d\), yielding a decomposition into a vector \(\mathbf{U}:=\{U_{k}\}_{k=1,\ldots,d}\) of i.i.d. random variables accounting for the randomness in the model, and a function \(f:=\{f_k\}_{k=1,\ldots,d}\) representing the economic reasoning behind. For most models, \(f\) is known explicitly and \(U_{k}\) may be interpreted as an exogenous risk factor affecting the return \(X_{t_{k}}\) in time step \(k\). While the existing literature addresses model uncertainty by manipulating the function \(f\), we introduce a new philosophy by distorting the source of randomness \(\mathbf{U}\) and interpret this as an analysis of the model’s robustness. We impose consistency conditions for a reasonable distortion and present a suitable probability law and a stochastic representation for \(\mathbf{U}\) based on a Dirichlet prior. The resulting framework has one parameter \(c\in [0,\infty]\) tuning the severity of the imposed distortion. The universal nature of the methodology is illustrated by means of a case study comparing the effect of the distortion to different models for \(\mathbf{X}\). As a mathematical byproduct, the consistency conditions of the suggested distortion function reveal interesting insights into the dependence structure between samples from a Dirichlet prior.

MSC:

60K99 Special processes
60G57 Random measures
60G09 Exchangeability for stochastic processes
60E07 Infinitely divisible distributions; stable distributions
91B30 Risk theory, insurance (MSC2010)

Citations:

Zbl 0779.60058
Full Text: DOI

References:

[1] C. Alexander and J. M. Sarabia, Quantile uncertainty and Value-at-Risk model risk, Risk Anal. 32 (2012), 8, 1293-1308.; Alexander, C.; Sarabia, J. M., Quantile uncertainty and Value-at-Risk model risk, Risk Anal., 32, 8, 1293-1308 (2012)
[2] C. Alexander and E. Sheedy, Developing a stress testing framework based on market risk models, J. Banking Finance 32 (2008), 10, 2220-2236.; Alexander, C.; Sheedy, E., Developing a stress testing framework based on market risk models, J. Banking Finance, 32, 10, 2220-2236 (2008)
[3] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Math. Finance 9 (1999), 3, 203-228.; Artzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D., Coherent measures of risk, Math. Finance, 9, 3, 203-228 (1999) · Zbl 0980.91042
[4] M. Avellaneda, A. Levy and A. Paràs, Pricing and hedging derivative securities in markets with uncertain volatilities, Appl. Math. Finance 2 (1995), 2, 73-88.; Avellaneda, M.; Levy, A.; Paràs, A., Pricing and hedging derivative securities in markets with uncertain volatilities, Appl. Math. Finance, 2, 2, 73-88 (1995) · Zbl 1466.91323
[5] K.-F. Bannör and M. Scherer, Capturing parameter risk with convex risk measures, Eur. Actuar. J. 3 (2013), 1, 97-132.; Bannör, K.-F.; Scherer, M., Capturing parameter risk with convex risk measures, Eur. Actuar. J., 3, 1, 97-132 (2013) · Zbl 1277.91072
[6] P. Barrieu and G. Scandolo, Assessing financial model risk, European J. Oper. Res. 242 (2015), 2, 546-556.; Barrieu, P.; Scandolo, G., Assessing financial model risk, European J. Oper. Res., 242, 2, 546-556 (2015) · Zbl 1341.91086
[7] Basel Committee on Banking Supervision, A global regulatory framework for more resilient banks and banking systems, www.bis.org/publ/bcbs189.pdf, 2010. Accessed January 29, 2015.; 2020-01-09 04:11:55 Citation within text.
[8] V. Bignozzi and A. Tsanakas, Model uncertainty in risk capital measurement, J. Risk, to appear.; Bignozzi, V.; Tsanakas, A., Model uncertainty in risk capital measurement, J. Risk · Zbl 1338.91080
[9] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31 (1986), 3, 307-327.; Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31, 3, 307-327 (1986) · Zbl 0616.62119
[10] CESR, Cesr’s guidelines on risk measurement and the calculation of global exposure and counterparty risk for UCITS, www.esma.europa.eu/system/files/10_788.pdf, 2010. Accessed January 29, 2015.; 2020-01-09 04:11:55 Citation within text.
[11] R. Cont, Model uncertainty and its impact on the pricing of derivative instruments, Math. Finance 16 (2006), 3, 519-547.; Cont, R., Model uncertainty and its impact on the pricing of derivative instruments, Math. Finance, 16, 3, 519-547 (2006) · Zbl 1133.91413
[12] R. Cont, R. Deguest and G. Scandolo, Robustness and sensitivity analysis of risk measurement procedures, Quant. Finance 10 (2010), 6, 593-606.; Cont, R.; Deguest, R.; Scandolo, G., Robustness and sensitivity analysis of risk measurement procedures, Quant. Finance, 10, 6, 593-606 (2010) · Zbl 1192.91191
[13] B. De Finetti, La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré 7 (1937), 1-68.; De Finetti, B., La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré, 7, 1-68 (1937) · JFM 63.1070.02
[14] K. Doksum, Tailfree and neutral random probabilities and their posterior distributions, Ann. Probab. 2 (1974), 2, 183-201.; Doksum, K., Tailfree and neutral random probabilities and their posterior distributions, Ann. Probab., 2, 2, 183-201 (1974) · Zbl 0279.60097
[15] F. Durante, A new class of symmetric bivariate copulas, J. Nonparametr. Stat. 18 (2006), 7-8, 499-510.; Durante, F., A new class of symmetric bivariate copulas, J. Nonparametr. Stat., 18, 7-8, 499-510 (2006) · Zbl 1122.62039
[16] P. Embrechts, G. Puccetti and L. Rüschendorf, Model uncertainty and VaR aggregation, J. Banking Finance 37 (2013), 8, 2750-2764.; Embrechts, P.; Puccetti, G.; Rüschendorf, L., Model uncertainty and VaR aggregation, J. Banking Finance, 37, 8, 2750-2764 (2013)
[17] Federal Reserve System, Supervisory guidance on model risk management, www.federalreserve.gov/bankinforeg/srletters/sr1107.htm, 2011. Accessed January 29, 2015.; 2020-01-09 04:11:56 Citation within text.
[18] T. S. Ferguson, A Bayesian analysis of some nonparametric problems, Ann. Statist. 1 (1973), 2, 209-230.; Ferguson, T. S., A Bayesian analysis of some nonparametric problems, Ann. Statist., 1, 2, 209-230 (1973) · Zbl 0255.62037
[19] T. S. Ferguson, Prior distributions on spaces of probability measures, Ann. Statist. 2 (1974), 4, 615-629.; Ferguson, T. S., Prior distributions on spaces of probability measures, Ann. Statist., 2, 4, 615-629 (1974) · Zbl 0286.62008
[20] A. Gupta, C. Reisinger and A. Whitley, Model uncertainty and its impact on derivative pricing, Rethinking Risk Measurement and Reporting, Risk Books, London (2010), 625-663.; Gupta, A.; Reisinger, C.; Whitley, A., Model uncertainty and its impact on derivative pricing, Rethinking Risk Measurement and Reporting, 625-663 (2010)
[21] J.-F. Mai, S. Schenk and M. Scherer, Exchangeable exogenous shock models, Bernoulli 22 (2016), 1278-1299.; Mai, J.-F.; Schenk, S.; Scherer, M., Exchangeable exogenous shock models, Bernoulli, 22, 1278-1299 (2016) · Zbl 1388.62153
[22] A. J. McNeil, R. Frey and P. Embrechts, Quantitative risk management, Princeton University Press, Princeton, 2005.; McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative risk management (2005) · Zbl 1089.91037
[23] R. B. Nelsen, An Introduction to Copulas, 2nd ed., Springer, New York, 2006.; Nelsen, R. B., An Introduction to Copulas (2006) · Zbl 1152.62030
[24] C. Pérignon and D. R. Smith, The level and quality of Value-at-Risk disclosure by commercial banks, J. Banking Finance 34 (2010), 2, 362-377.; Pérignon, C.; Smith, D. R., The level and quality of Value-at-Risk disclosure by commercial banks, J. Banking Finance, 34, 2, 362-377 (2010)
[25] L. Rüschendorf and V. de Valk, On regression representations of stochastic processes, Stochastic Process. Appl. 46 (1993), 2, 183-198.; Rüschendorf, L.; de Valk, V., On regression representations of stochastic processes, Stochastic Process. Appl., 46, 2, 183-198 (1993) · Zbl 0779.60058
[26] W. Schoutens, E. Simons and J. Tistaert, A perfect calibration! Now what?, Wilmott Magazine (2004), 66-78.; Schoutens, W.; Simons, E.; Tistaert, J., A perfect calibration! Now what?, Wilmott Magazine, 66-78 (2004)
[27] F. G. Tricomi, On the theorem of Frullani, Amer. Math. Monthly 58 (1951), 3, 158-164.; Tricomi, F. G., On the theorem of Frullani, Amer. Math. Monthly, 58, 3, 158-164 (1951) · Zbl 0042.28602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.