×

CLT with explicit variance for products of random singular matrices related to Hill’s equation. (English) Zbl 1498.37088

Summary: We prove a central limit theorem (CLT) for the product of a class of random singular matrices related to a random Hill’s equation studied by Adams-Bloch-Lagarias. The CLT features an explicit formula for the variance in terms of the distribution of the matrix entries and this allows for exact calculation in some examples. Our proof relies on a novel connection to the theory of \(m\)-dependent sequences which also leads to an interesting and precise nondegeneracy condition.

MSC:

37H15 Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents
60B20 Random matrices (probabilistic aspects)
60F05 Central limit and other weak theorems

References:

[1] Aaronson, J., Gilat, D., Keane, M. and de Valk, V., An algebraic construction of a class of one-dependent processes, Ann. Probab.17(1) (1989) 128-143. · Zbl 0681.60038
[2] Adams, F. C. and Bloch, A. M., Hill’s equation with random forcing terms, SIAM J. Appl. Math.68(4) (2008) 947-980. · Zbl 1162.34045
[3] Adams, F. C. and Bloch, A. M., Hill’s equation with random forcing parameters: The limit of delta function barriers, J. Math. Phys.50(7) (2009) 073501. · Zbl 1342.34115
[4] Adams, F. C. and Bloch, A. M., Hill’s equation with random forcing parameters: Determination of growth rates through random matrices, J. Stat. Phys.139(1) (2010) 139-158. · Zbl 1198.34104
[5] Adams, F. C. and Bloch, A. M., Hill’s equation with small fluctuations: Cycle to cycle variations and stochastic processes, J. Math. Phys.54(3) (2013) 033511. · Zbl 1282.70023
[6] Adams, F. C., Bloch, A. M. and Lagarias, J. C., Random Hill’s equations, random walks, and products of random matrices, in Recent Trends in Dynamical Systems, , Vol. 35 (Springer, Basel, 2013), pp. 447-470. · Zbl 1321.34043
[7] Benoist, Y. and Quint, J.-F., Central limit theorem for linear groups, Ann. Probab.44(2) (2016) 1308-1340. · Zbl 1341.22006
[8] Bougerol, P. and Lacroix, J., Products of Random Matrices with Applications to Schrödinger Operators, , Vol. 8 (Birkhäuser, Boston, 1985). · Zbl 0572.60001
[9] Burton, R. M., Goulet, M. and Meester, R., On \(1\)-dependent processes and \(k\)-block factors, Ann. Probab.21(4) (1993) 2157-2168. · Zbl 0788.60049
[10] Cohen, J. E. and Newman, C. M., The stability of large random matrices and their products, Ann. Probab.12(2) (1984) 283-310. · Zbl 0543.60098
[11] A. Comtet, C. Texier and Y. Tourigny, Representation theory and products of random matrices in SL \((2, \mathbb{R} )\), preprint (2019), arXiv:1911.00117. · Zbl 1197.82065
[12] Crisanti, A., Paladin, G. and Vulpiani, A., Products of Random Matrices in Statistical Physics, , Vol. 104 (Springer-Verlag, Berlin, 1993). · Zbl 0784.58003
[13] Diananda, P. H., Some probability limit theorems with statistical applications, Proc. Cambridge Philos. Soc.49 (1953) 239-246. · Zbl 0052.36205
[14] Drabkin, M. and Schulz-Baldes, H., Gaussian fluctuations of products of random matrices distributed close to the identity, J. Difference Equ. Appl.21(6) (2015) 467-485. · Zbl 1320.60021
[15] Finch, S. R., Mathematical Constants II, , Vol. 169 (Cambridge University Press, Cambridge, 2019). · Zbl 1422.00002
[16] Forrester, P. J., Lyapunov exponents for products of complex Gaussian random matrices, J. Stat. Phys.151(5) (2013) 796-808. · Zbl 1272.82020
[17] Forrester, P. J. and Zhang, J., Lyapunov exponents for some isotropic random matrix ensembles, J. Stat. Phys.180 (2020) 558-575. · Zbl 1446.60006
[18] Furstenberg, H. and Kesten, H., Products of random matrices, Ann. Math. Statist.31 (1960) 457-469. · Zbl 0137.35501
[19] Gut, A., Probability: A Graduate Course, , 2nd edn. (Springer-Verlag, New York, 2013). · Zbl 1267.60001
[20] Hill, G. W., On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Acta Math.8(1) (1886) 1-36. · JFM 18.1106.01
[21] Holroyd, A. E. and Liggett, T. M., Finitely dependent coloring, Forum Math. Pi4 (2016) e9. · Zbl 1361.60025
[22] Janson, S., On degenerate sums of \(m\)-dependent variables, J. Appl. Probab.52(4) (2015) 1146-1155. · Zbl 1334.60021
[23] Kargin, V., On the largest Lyapunov exponent for products of Gaussian matrices, J. Stat. Phys.157(1) (2014) 70-83. · Zbl 1307.15056
[24] Le Page, E., Théorèmes limites pour les produits de matrices aléatoires, in Probability Measures on Groups, , Vol. 928 (Springer-Verlag, Berlin, 1982), 258-303. · Zbl 0506.60019
[25] M. Lemm and D. Sutter, Quantitative lower bounds on the Lyapunov exponent from multivariate matrix inequalities, preprint (2020), arXiv:2001.09115. · Zbl 1487.37068
[26] Lima, R. and Rahibe, M., Exact Lyapunov exponent for infinite products of random matrices, J. Phys. A27(10) (1994) 3427-3437. · Zbl 0830.15018
[27] Magnus, W. and Winkler, S., Hill’s Equation, , No. 20 (John Wiley & Sons, New York, 1966). · Zbl 0158.09604
[28] Majumdar, R., Mariano, P., Panzo, H., Peng, L. and Sisti, A., Lyapunov exponent and variance in the CLT for products of random matrices related to random Fibonacci sequences, Discrete Contin. Dyn. Syst. Ser. B25(12) (2020) 4779-4799. · Zbl 1467.37052
[29] Mannion, D., Products of \(2\times2\) random matrices, Ann. Appl. Probab.3(4) (1993) 1189-1218. · Zbl 0784.60019
[30] Marklof, J., Tourigny, Y. and Wołowski, L., Explicit invariant measures for products of random matrices, Trans. Amer. Math. Soc.360(7) (2008) 3391-3427. · Zbl 1153.15028
[31] Newman, C. M., The distribution of Lyapunov exponents: Exact results for random matrices, Comm. Math. Phys.103(1) (1986) 121-126. · Zbl 0593.58051
[32] Pollicott, M., Maximal Lyapunov exponents for random matrix products, Invent. Math.181(1) (2010) 209-226. · Zbl 1196.37032
[33] Protasov, V. Y. and Jungers, R. M., Lower and upper bounds for the largest Lyapunov exponent of matrices, Linear Algebra Appl.438(11) (2013) 4448-4468. · Zbl 1281.65154
[34] Sturman, R. and Thiffeault, J.-L., Lyapunov exponents for the random product of two shears, J. Nonlinear Sci.29(2) (2019) 593-620. · Zbl 1415.37076
[35] Texier, C., Fluctuations of the product of random matrices and generalized Lyapunov exponent, J. Stat. Phys.181(3) (2020) 990-1051. · Zbl 1460.60008
[36] Tsitsiklis, J. N. and Blondel, V. D., The Lyapunov exponent and joint spectral radius of pairs of matrices are hard — When not impossible — To compute and to approximate, Math. Control Signals Systems10(1) (1997) 31-40. · Zbl 0888.65044
[37] Tutubalin, V. N., On limit theorems for the product of random matrices, Theor. Prob. Appl.10(1) (1965) 15-27. · Zbl 0147.17105
[38] Viswanath, D., Random Fibonacci sequences and the number \(1.13198824\ldots \), Math. Comp.69(231) (2000) 1131-1155. · Zbl 0983.11007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.