×

A uniform Kadec-Klee property for symmetric operator spaces. (English) Zbl 0847.46033

Summary: We show that if a rearrangement invariant Banach function space \(E\) on the positive semi-axis satisfies a non-trivial lower \(q\)-estimate with constant 1 then the corresponding space \(E({\mathcal M})\) of \(\tau\)-measurable operators, affiliated with an arbitrary semifinite von Neumann algebra \(\mathcal M\) equipped with a distinguished faithful, normal, semi-finite trace \(\tau\), has the uniform Kadec-Klee property for the topology of local convergence in measure.
In particular, the Lorentz function spaces \(L_{q, p}\) and the Lorentz-Schatten classes \({\mathcal C}_{q, p}\) have the UKK property for convergence locally in measure and for the weak-operator topology, respectively. As a partial converse, we show that if \(E\) has the UKK property with respect to local convergence in measure then \(E\) must satisfy some non-trivial lower \(q\)-estimate. We also prove a uniform Kadec-Klee result for local convergence in any Banach lattice satisfying a lower \(q\)-estimate.

MSC:

46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] DOI: 10.1016/0022-1236(74)90014-7 · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[2] DOI: 10.1007/BF01075624 · doi:10.1007/BF01075624
[3] Meyer-Nieberg, Banach Lattices (1991) · doi:10.1007/978-3-642-76724-1
[4] DOI: 10.1007/BF02771613 · Zbl 0156.37902 · doi:10.1007/BF02771613
[5] Chi’lin, Uniform and local uniform convexity of symmetric spaces of measurable operators pp 24– (1990)
[6] Creekmore, Indag.Math. 43 pp 145– (1981) · doi:10.1016/1385-7258(81)90143-8
[7] DOI: 10.1512/iumj.1991.40.40018 · Zbl 0736.47029 · doi:10.1512/iumj.1991.40.40018
[8] Lindenstrauss, Classical Banach spaces II, function spaces (1979) · Zbl 0403.46022 · doi:10.1007/978-3-662-35347-9
[9] DOI: 10.1073/pnas.54.4.1041 · Zbl 0128.35801 · doi:10.1073/pnas.54.4.1041
[10] Brodski?, Dokl. Akad. Nauk. SSSR(N.S.) 59 pp 837– (1948)
[11] Lennard, Studia Math. 100 pp 95– (1991)
[12] DOI: 10.1006/jfan.1994.1014 · Zbl 0804.46044 · doi:10.1006/jfan.1994.1014
[13] DOI: 10.2307/2048364 · Zbl 0758.46017 · doi:10.2307/2048364
[14] Besbes, Bull. Australian Math. Soc. 46 pp 287– (1992)
[15] Besbes, C.R. Acad. Sci. Paris I 311 pp 243– (1990)
[16] DOI: 10.2307/2001126 · Zbl 0706.43003 · doi:10.2307/2001126
[17] DOI: 10.2307/2043888 · Zbl 0473.47032 · doi:10.2307/2043888
[18] DOI: 10.1512/iumj.1992.41.41050 · Zbl 0790.46013 · doi:10.1512/iumj.1992.41.41050
[19] Krein, Interpolation of linear operators 54 (1982) · Zbl 0535.47008
[20] DOI: 10.2307/2043787 · Zbl 0471.54027 · doi:10.2307/2043787
[21] DOI: 10.2307/2313345 · Zbl 0141.32402 · doi:10.2307/2313345
[22] Khamsi, J. Nonlinear Anal.: Th. Meth. Appl.
[23] Istra??escu, Math. Proc. Camb. Phil. Soc. 95 pp 325– (1984)
[24] Huff, Rocky Mountain J. Math. 10 pp 743– (1980)
[25] Gohberg, Mat. Sb. 64 pp 481– (1964)
[26] Gohberg, Introduction to the theory of non-selfadjoint operators 18 (1969)
[27] Fremlin, Math. Proc. Camb. Philos. Soc. 64 pp 625– (1968)
[28] Fack, Pacific J. Math. 123 pp 269– (1986) · Zbl 0617.46063 · doi:10.2140/pjm.1986.123.269
[29] Fack, J. Operator Theory 7 pp 307– (1982)
[30] Van Dulst, Can. J. Math. 38 pp 728– (1986) · Zbl 0615.46016 · doi:10.4153/CJM-1986-038-4
[31] DOI: 10.1007/BFb0061556 · doi:10.1007/BFb0061556
[32] Dowling, Math. Proceedings Cambridge Phil. Soc. 114 pp 25– (1993)
[33] Xu, Math. Proc. Camb. Phil. Soc. 109 pp 541– (1991)
[34] Dowling, Bull. des Sci. Math.
[35] Terp, L (1981)
[36] Dowling, Math. Proc. Camb. Phil. Soc. 111 pp 535– (1992)
[37] Dodds, Trans. Amer. Math. Soc.
[38] DOI: 10.2307/2043887 · Zbl 0473.47031 · doi:10.2307/2043887
[39] DOI: 10.1007/BF01215160 · Zbl 0653.46061 · doi:10.1007/BF01215160
[40] Partington, Math. Proc. Cambridge Phil. Soc. 93 pp 127– (1983)
[41] Dilwohth, J. Austral. Math. Soc.
[42] Chi’lin, Izv. Yys? U?eb. Zaved 9 pp 63– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.